FlashCo Becomes Exclusive U.S. Partner for Thaler Roof Accessory Specialty Products

FlashCo Manufacturing, Inc. recently entered into an exclusive partnership agreement with Thaler Metal Industries Ltd. Canada. FlashCo will be marketing and selling the Thaler roof accessory specialty product lines including drains, flashings and vents to the United States market. FlashCo and Thaler offer a complementary set of roof flashing products for the

roofing industry. FlashCo is a market leader in low slope, single-ply flashings and steep slope lead flashings. Thaler has been an innovator and market leader in spun metals including the development of one of the first retrofit drain solutions, according to the company.

FlashCo will immediately begin marketing and selling Thaler products through its distribution and partner network in the United States. FlashCo is currently incorporating the Thaler roof drains, stack jack flashings, gravity vents and relief vents into its existing product lines. The addition of the Thaler products enhances FlashCo’s market leadership in the re-roof and new construction markets.

“We have been talking for several months now,” says Greg Morrow, FlashCo President. “The

synergies are tremendous, not just from a product standpoint, but also from a business standpoint. Thaler, like FlashCo, puts a strong emphasis on speed and customer satisfaction. We knew that it was a good fit on the product and people sides.”

“FlashCo is an ideal partner for us,” explained Joe Magistrale, Thaler General Manager. “We have straight-forward objectives to make and sell quality products, however we know we can’t do this alone. We’ve tried other US partnerships in the past, but working with FlashCo we can already tell will be different. FlashCo’s footprint throughout the entire US is very important to us, and we see action that tells us they are very serious about making this successful. We anticipate making a shockwave across the US with our new FlashCo partnership.”

Thaler holds numerous patents for its innovative products including its RDX30 retrofit drain.

According to the company, Thaler’s pioneering design enables the RDX30 to be installed 10 times faster than other drains without the need for tools, or cutting. The RDX30 features Thaler’s patented SuperSeal (expansion seal) technology that is critical in preventing leaks caused by backflow pressure. In addition, the SuperSeal keeps the Thaler drain clear of the obstructions found in mechanically sealed systems. Thaler’s SuperSeal design advantages enable the RDX30 to drain 30 percent faster than other drains in the market and also eliminates debris build-up in the drain body pipe.

“Our business philosophy focuses on researching market needs, designing innovative solutions and producing products that provide longer life than any others on the market,” adds Mr. Magistrale. “In FlashCo we have found a like-minded partner who delivers quality products and has an outstanding direct sales and support team. We are very excited about what this partnership will produce.”

“For FlashCo, it’s the opportunity to partner with another industry leader,” says Mr. Morrow. “Thaler is the original designer of numerous product innovations and their drains, flashings and vents adds complementary products to our existing lines. We expect the Thaler products to sell quite well here in the US and it’s a great honor for us to have the opportunity to be Thaler’s exclusive partner here in the States.”

For more information, visit www.FlashCoMfg.com or www.ThalerMetal.com.

Ponding Water Basics: Proper Drainage Design and Low-Slope Roofs

Roofing professionals install a new asphalt roof on the Broward County Stephen Booher Building in Coral Springs, Florida. Photo: Advanced Roofing Inc.

A low-slope asphalt roofing system is cost effective, durable and reliable. Multiple layers of weatherproof membranes protect a building, its residents and the property it houses. There are a few design elements that will help building owners get the most from their roofing system. Managing ponding water is essential to properly maintaining a roof.

Ponding water is defined as the water which remains on a roof 48 hours or longer. Water may accumulate on a low-slope roof due to rain, snow or runoff from rooftop equipment. Ponding water can have major negative consequences, regardless of the type of roofing system. Proper design, installation and maintenance of roofing structures can prevent this condition and its associated problems.

The adverse effects of ponding water on roofs can include:

  • Deformation of the deck structure:Ponding water can substantially increase the load on roof decks. As water accumulates, deck deflections can increase, thereby resulting in additional ponding water, which could compromise the structural integrity of the deck.
  • Damage to the roof surface:Ice formations develop and move constantly with changes in temperature. This movement can “scrub” the roof membrane to such an extent that considerable physical damage to the membrane can occur.
  • Growth of algae and vegetation:When water stands for long periods of time, algae and vegetation growth will likely occur, and may cause damage to the roof membrane. Additionally, vegetation can clog drains and cause additional ponding.
  • Accumulation of dirt and debris in the ponding area:Dirt, debris, and other contaminants can affect and damage the membrane surface. The can also lead to clogged drains.

Proper design and installation are crucial factors in roof system performance. This photo shows an Atactic Polypropylene (APP) modified bitumen membrane being applied by torch to a low-slope roof. Photo: ARMA

Ponding water may lead to accelerated erosion and deterioration of the membrane surface that can result in failure of the roof system. Allowing even relatively small amounts of moisture beneath the roof membrane may reduce the thermal efficiency of the insulation. More importantly, moisture intrusion can cause serious damage to the deck, insulation, and membrane as well as the building’s interior.

The Asphalt Roofing Manufacturers Association (ARMA) recommends that roof designs provide adequate slope (minimum of ¼ inch per foot) to ensure that the roof drains freely throughout the life of the building and to thereby avoid the effects of ponding water. Model building codes also require a minimum ¼ inch per foot slope for new construction projects, and require positive drainage for re-roofing projects. These requirements are intended to prevent water from ponding on roof surfaces.

Managing Ponding Water

Here are a few best practices to manage ponding water:

  • Adequate sloping should be taken into account during the design process. A roof’s structural frame or deck should be sloped, and drainage components like roof drains and scuppers should be included in the design.
  • In addition, secondary (or emergency) drains may be required by local plumbing codes to help reduce the risk of a structural failure due to clogged drainage systems. Talk to your roof membrane manufacturer and/or roof system designer to determine the proper location of these components.
  • If a deck does not provide the necessary slope to drain, a tapered insulation system can be used. A combination of different approaches — single slope, two-way slope, and four-way slope — is often used to achieve the necessary slope and to allow for moisture drainage.
  • Additionally, crickets installed upslope of rooftop equipment and saddles positioned along a low-point between drains, can help prevent localized ponding in conjunction with a tapered insulation system.
  • Building designers and owners should work with contractors and roof manufacturers to determine which methods are best and appropriate for a roof assembly’s long-term performance, whether it’s a new construction or re-roof project.

The NRCA Roofing Manual: Membrane Roof Systems—2015, states the following: “NRCA recommends that designers make provisions in their roof designs for positive slope.”

The manual spells out that slope generally is provided by:

  • Sloping the structural framing or roof deck
  • Designing a tapered insulation system
  • Proper location of roof drains, scuppers and gutters
  • A combination of the above

By following the proper drainage practices detailed above, building owners can positively impact their low-slope roofing system and help to ensure it will remain durable and reliable throughout its service life.

To obtain specific information about ponding water on particular products and systems, contact your roof material manufacturer. For more information about low-slope asphalt roofing systems, visit www.asphaltroofing.org.

The Federal Government Is Making Energy-Efficient Roofing Attractive

Small businesses are now able to deduct the full cost of replacing a roof on an existing non-residential building in the year the project was completed instead of depreciating that cost over a 39-year period, as was previously required. Photo: SOPREMA

It is fair to say that Washington, D.C., is far from dull. From the recent Tax Cut and Jobs Act to rolling debates on passing a federal budget, there is a great deal going on at the federal level that impacts the building and roofing industries. In particular, new reforms allow qualifying building owners to expense, or deduct, up to $1 million for the cost of certain building improvements in the year the work is performed, including adding insulation during roof replacement projects to meet or go beyond modern building energy code requirements. The impact can be significant for capital improvement projects. For example, a building owner that expenses the cost of a full roof replacement can reduce the net cost of the entire project by 25 percent to 30 percent.

Commercial Building Roof Replacements

The Tax Cut and Jobs Act, signed into law by President Trump on December 22, 2017, includes a provision that reduces the overall cost associated with re-roofing and significantly improves the cost-effectiveness of commercial roof replacements that comply with building energy codes. The vast majority of state and local governments require minimum insulation levels for both new roofs and roof replacements (but not for roof repairs or recovers). These requirements apply to existing buildings because the most economical time to improve a roof’s thermal performance is when the roof membrane is pulled off and replaced. Also, roof replacements are one of the best opportunities for improving energy efficiency in existing buildings, which account for 40 percent of U.S. energy use.

Starting in 2018, the new federal tax law expands the definition of “qualified real property” under the small business expensing provisions of Internal Revenue Code section 179 to include improvements to existing nonresidential roofs. Section 179 allows businesses to fully expense (deduct) up to $1 million (indexed for inflation after 2018) in one year for qualified business expenses, such as equipment purchases and specific building improvements. With this change, small businesses are now able to deduct — in the year completed — the full cost of replacing a roof on an existing non-residential building instead of depreciating that cost over a 39-year period, as was required under prior law. As a mechanism intended to limit the deduction to small businesses, the benefit is phased out for businesses that spend more than $2.5 million (also indexed for inflation) on qualified equipment and real property. This change takes effect in 2018 and, unlike some provisions of the new law, is permanent.

A typical scenario under which a commercial building roof replacement is required to comply with a building energy code is one where an older building with a low-slope roof has R-11 or R-12 insulation in the roof prior to the roof replacement. The R-12 assumption is based on a U.S. Department of Energy (DOE) study that evaluated the level of existing insulation in commercial building roofs. For most of the country, current building energy codes require roof replacements to have a minimum level of R-25 or R-30, depending on the climate zone.

The average simple payback period for meeting the energy code is 11.6 years, according to a comprehensive energy modeling study completed in 2009 (“Energy and Environmental Impact Reduction Opportunities for Existing Buildings with Low-Slope Roofs,” produced by Covestro).

The payback period is the amount of time it takes for the energy savings to equal the cost of installing the additional insulation. By allowing a building owner to deduct the full cost of the roof replacement, including the cost for installing additional insulation, the net cost of the entire project is reduced by 25 percent to 30 percent, depending on a tax payer’s tax rate. (The Tax Cuts & Jobs Act reduced the corporate tax rate to 21 percent, but the pass-through rates, which are more relevant to small businesses, are closer to 30 percent, which increases the impact of this new deduction.) More importantly, the deduction shortens the average payback period on the cost of installing additional insulation to 8.1 years, making the investment in energy efficiency even more cost effective for the building owner.

Disaster Relief Reforms and Resilient Buildings

Recent maneuvers by Congressional budget writers provided several positive reforms that will impact the resiliency of buildings in some of the most vulnerable parts of the country.

First, Congress passed improvements to the Federal Cost Share Reform Incentive that increases post-disaster federal cost-share with states from 75 percent to as high as 85 percent on a sliding scale based on whether a state has taken proactive steps to improve disaster preparedness. These steps can include the adoption and enforcement of the most recent building codes. This further incentivizes states to maintain robust and current building codes, including the energy code.

Second, under reforms to the Stafford Act, federal disaster relief funds administered by the Federal Emergency Management Agency may be used to replace or restore the function of a facility to industry standards without regard to pre-disaster condition and replace or restore components of the facility not damaged by the disaster where replacement or restoration is required to fully restore the function of a facility. This allows post-disaster funds to be more effectively used to improve the resiliency of damaged buildings and should create opportunities for higher performing roof systems to replace those damaged in disasters.

While the built environment is likely to benefit under recent Congressional action, other policy priorities for the construction and energy efficient industries have been left unresolved. For example, Congress “extended” several clean energy and energy-efficiency related tax provisions, including the Section 179D deduction for commercial building energy efficiency. However, in head-scratching fashion, this and other tax provisions were only extended through December 31, 2017. This means more work is ahead to preserve the policies for the long term and add much needed certainty to the marketplace.

Unpredictable is a polite (and likely understated) description of the policy environment in our nation’s capital. You need not look beyond the recent FY2018 budget deal for an example. Building energy efficiency advocates spent countless hours educating lawmakers on the importance of funding federal research led by the Department of Energy (DOE). Fearing a federal budget that would cripple these vital programs by slashing budgets, advocates saw an 11 percent increase to the DOE’s Office Energy Efficiency and Renewable Energy budget, which leads research on building energy performance. And while history is a poor predictor of future success, recent action impacting buildings demonstrates that policymakers understand the need for strong policies that encourage and lead to more efficient and resilient construction.

Mule-Hide Products Co. Launches Redesigned Website 

Mule-Hide Products Co. Inc. has redesigned its mulehide.com website, making it faster and easier for users to access the information they need when choosing, specifying, installing, maintaining or repairing Mule-Hide low-slope roofing systems.

The extensive and easily navigated product catalog can be searched by roofing system type (single-ply systems, coating systems, modified bitumen systems, vegetative roofing systems, systems for use in modular construction, and maintenance and repair products) or by specific product category (membranes, adhesives, insulation, coatings, accessories, etc.). Overviews of each roofing system type summarize their features and benefits, helping users choose the right system for a given job. Product-specific information includes charts of part numbers, sizes and packaging; detail drawings; installation instructions and videos; code approvals, certifications; specification manuals; estimating worksheets; warranty information and more.

The site was designed with mobile devices in mind, making it easy for users to access the information and services they need, no matter where they are and no matter what type of device they’re using – whether it’s a mobile phone on a rooftop, a tablet in a customer’s conference room or the computer on their own office desk.

The “Find-a-Rep” function enables users to pinpoint the nearest Mule-Hide Products distributor or Territory Manager.

The website also keeps users posted on the latest news from Mule-Hide Products, including product introductions, notable projects, technical updates and upcoming trade shows.

The site’s back-end architecture and content management system are the latest technologies, ensuring that the site and its services load quickly.

The new site design, architecture, security, database integrations and custom applications were provided by Iowa Computer Gurus of West Des Moines, Iowa.

For more information, visit www.mulehide.com.

North Carolina Legislative Building Restoration Poses Unique Challenges

The North Carolina State Legislative Building was the site of a renovation project that included asbestos abatement in the interior and a complete restoration of the building’s roof systems.

The North Carolina State Legislative Building was the site of a renovation project that included asbestos abatement in the interior and a complete restoration of the building’s roof systems. Photos: SkySite Images

Some of the variables that can make a project difficult include a variety of complex, interconnected systems, unique design elements, and a tight schedule. These challenges are heightened on a highly visible, historic building, where the goal of keeping the design historically accurate must be balanced with making improvements to the structure and functionality of the systems. All of these elements and more were in play during the restoration of the one-of-a-kind roof on the North Carolina State Legislative Building in Raleigh, North Carolina. It took a talented team of design, engineering, and roofing professionals to bring the project to a successful conclusion.

Originally designed by architect Edward Durell Stone, the building has been the home of the state legislature since 1963, but water intrusion under its copper pyramids and at windows and doors on the promenade level precipitated a complete restoration project. Renovation work conducted in 2016 and 2017 included asbestos abatement in the interior and a complete restoration of the building’s roof systems.

The roofing phase of the project included removing and replacing the metal roof systems on the five copper-clad pyramids, as well as re-roofing the low-slope sections adjacent to the pyramids with a two-ply modified bitumen system. A liquid-applied waterproofing system was installed in the planter areas and under the pavers in the promenade section. The project also involved the removal and replacement of windows, doors, and skylights, as well as repairing and coating the concrete surfaces at the perimeter of the roof.

The design of the quilted flat lock copper panel system involved 17 different panel profiles. A false batten was added after the panels were in place.

The design of the quilted flat lock copper panel system involved 17 different panel profiles. A false batten was added after the panels were in place. Photos: SkySite Images

Companies involved in the project included Raymond Engineering, headquartered in Raleigh, North Carolina, which provided engineering and architectural services; Owens Roofing Inc., also located in Raleigh, which served as the general contractor on the roofing phase of the project and installed the low-slope systems; and The Century Slate Company, headquartered in Durham, North Carolina, which removed and replaced the copper roofs on the five pyramids.

Some of the key players in the project shared their insights with Roofing, including John Willers, a senior engineer with Raymond Engineering; Bert Owens, president of Owens Roofing; and Mike Tenoever, president of Century Slate.

“This is an iconic state building with a unique roof system which the owner and designer required to be aesthetically replicated,” Tenoever notes. “At the same time, some functionality and technical improvements were incorporated. This is a very high-profile project with a lot of complexity, particularly given the schedule. There were a lot of details compressed into a very short period of time.”

Design and Pre-Construction

Raymond Engineering conducted testing on the existing roofs and specified systems designed to match the originals and provide some necessary improvements, including added insulation and ventilation under the pyramids. Willers worked closely with Jason Mobraten, the senior architect on the project. “We provided the engineering and architectural services, beginning with design and then assisting with bidding and managing the construction phase of this project,” says Willers. “We engineered the copper roof, all of the detailing for the modified asphalt roof, and the detailing for the drainage, the pavers, and the sealants for the promenade.”

Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate was cleaned and primed, a liquid-applied waterproofing system was installed.

Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate was cleaned and primed, a liquid-applied waterproofing system was installed. Photos: SkySite Images

The schedule was an obvious challenge, as the majority of the work had to be completed while the legislature was in recess, and there were substantial financial penalties that would come into play if the work was not completed on time. “The client also required that the asbestos abatement be completed before re-roofing the copper-clad pyramids to avoid the risk of dislodging the asbestos-containing textured ceiling finish. However, doing the work in two phases allowed the asbestos contractor to get started while the rest of the job was designed and bid,” Willers states.

The building houses legislators’ offices, and it was open and occupied during construction, with the exception of the areas undergoing asbestos abatement. The schedule had to be carefully adjusted as the job progressed. “In addition to our role in monitoring the technical aspects of the construction, we closely monitored the construction phasing and sequencing, as it was directly driven by the schedule of the state legislature,” Willers notes. “We had to take a lot of care in developing the schedule and monitoring it.”

Willers and Mobraten knew that the details on this project would be crucial. “There were previously some issues where the copper and the low-slope membrane roofs met,” Willers says. “We detailed that very carefully so that we had redundancy in keeping that watertight.”

Extensive mock-ups of the copper pyramids were constructed and tested to ensure the quilted pattern could be exactly replicated while avoiding the leaks that plagued the existing structure.

Photos: SkySite Images

Photos: SkySite Images

As designers looked for ways to improve construction, they explored the design and construction of the quilted panels. “From a design standpoint, we wondered why we had this odd diamond-shaped pattern,” Willers recalls. “After we played with the dimensions a bit, we realized that if you fly over the building, from above all of those diamond sections look like squares.”

The key was to replicate the design with its false battens while avoiding leaks. “We were concerned about how to detail out the joining of the copper sheets that formed the diamond-shaped panels,” Willers says. “What had been done was susceptible to windblown rain getting in. We did two things differently: the little clips that supported these battens were secured by forming the clips with hooks that would be integral with the single-locked seams and soldering the clips to the top surface of the copper panels. Previously they were held in place by pop rivets, which went through the copper.”

The Secrets of the Pyramids

Century Slate was well prepared to tackle the copper roofing on the project. The company has been in business more than 20 years, and it specializes in historic restoration projects including slate, tile, wood, copper and other historical metals.

Crews from Century Slate removed the existing copper panels. The copper was salvaged and recycled.

Crews from Century Slate removed the existing copper panels. The copper was salvaged and recycled. Photos: SkySite Images

Tenoever knew the design of the original quilted flat lock copper panel system needed to be replicated exactly. “There were 17 different panel profiles, each within a very particular location within the roof’s quilted pattern,” Tenoever notes. “Proper placement of each different profile was essential to the whole system working correctly and looking like the original.”

The first step was to remove the existing copper roofs. “We tore off the entire system down to the deck,” Tenoever explains. “We then installed a semi permeable a vapor barrier, insulation, and a vapor retarder.”

Along with added insulation and Carlisle WIP 300HT self-adhering underlayment, crews also installed a vented nail base from Hunter Panels. “The Hunter Cool-Vent is a vented nail base that gets screwed down,” Tenoever says. “The goal was to have a breathable air cavity. All of the hip caps are actually vented to allow the air to get out.”

With the addition of the insulation and nail base, the roof was built up approximately 6 inches from the previous configuration. This added height necessitated changes in the custom flashing at the base of the pyramids but did not change the configuration of the copper panels.

In all, 22,500 square feet of copper panels fabricated by K&M Sheet Metal in Durham were installed. Each of the 17 different panels was labeled with a letter code. “When they were out at the site, we could just grab an A panel or a B panel, as needed, and bring them to that layout,” Tenoever explains. “Four of the pyramids were the same, and the center one was different, as that was the one that had skylights built into it.”

The areas between the pyramids were covered with a two-ply modified bitumen roofing system. Photos: SkySite Images

The panels feature flat-lock clips that were screwed down to the nail base. “It’s a typical flat seam panel system, and the panels interlock together,” says Tenoever. “You can see the batten panel above it, which is an aesthetic feature. The battens and the clips that held them were amazingly intricate, for what they were. They were cut out with a CNC machine and soldered onto the copper panels prior to installation. Later we came back and installed the batten system over the top.”

Century Slate built new curbs in the center pyramid for the new skylights, which were manufactured by Wasco. “The skylights were one of the last things to go on,” says Tenoever. “They were custom made because even though they look square, there isn’t a square angle on them.”

Custom copper flashings were installed at the bases. “One of the trickier parts for us probably would have been the tie-in of the modified roof, because Owens Roofing had to do their bit, and we were also replacing all of the wood blocking and everything all along the bottom edge before we could put our flashing on,” Tenoever recalls. “It took a lot of coordination between the two trades, but it all worked out.”

The Low-Slope Roof Systems

Owens Roofing served as the general contractor on the project and installed the low-slope roof systems. The company was established in 1986 in Raleigh, and focuses on commercial and institutional buildings, almost exclusively re-roofing. Much of its work is on historic buildings, so Owens was confident he could execute the project and complete it on schedule.

A scaffolding system offered secure roof access, but material had to be loaded and removed from one access point, so logistics had to be carefully mapped out.

A scaffolding system offered secure roof access, but material had to be loaded and removed from one access point, so logistics had to be carefully mapped out. Photos: SkySite Images

Crews from Owens Roofing installed 18,900 square feet of modified bitumen roofing from Soprema over concrete decks, including the areas between the pyramids. Tapered polyiso and half-inch DEXcell cover board from National Gypsum were installed using Duotack adhesive, followed by the two plies of modified bitumen membrane.

A liquid waterproofing system from Sika was specified for the large planter areas. Crews from Owens Roofing removed the existing plants, media and drainage system from four 42-foot-by-42-foot fixed planters with skylights. After the substrate had been cleaned and primed, the Sika RoofPro system was installed.

“Once it’s cleaned and primed, it’s pretty simple,” says Owens. “The product is one part, and you don’t even have to mix it. We applied it with rollers on this project. You embed fabric sheets in the system and then topcoat it. It was a cold-weather job, but fortunately we caught a break last winter in that it wasn’t as cold as usual, and we didn’t miss as much time as we might have.”

The 30,000-square-foot promenade section was originally covered by white granite pavers native to North Carolina. The old pavers were removed and replaced over a new roof system, which was comprised of modified bitumen sheets beneath the liquid-applied waterproofing system. “The concrete deck was primed and a modified bitumen base ply heat welded to the deck,” Owens explains. “This surface was primed in preparation for the Roof Pro system, which was then installed.”

Innovative Roof Services of Raleigh was called in to conduct a high-voltage electrical testing to ensure there were no voids in the system before the pavers were re-installed. The pavers had originally been set in a bed of mortar, and they had to be removed and cleaned, which revealed a problem. “When we took the pavers up, we found out that they ranged between 1-1/8 and 1-3/4 inches thick,” Owens notes. “That wasn’t a problem when they were set in a bed of mortar, but over extruded polystyrene, they would have been all up and down. We put in a change order and had the pavers set in a bed of sand on top of one layer polystyrene.” The sand was adjusted by hand to ensure the pavers were level. New pavers were added to replace those broken over the years.

On the roof’s concrete eyebrows, damaged areas of concrete were repaired, joints were sealed, and a cold-applied waterproofing system from Sika Sarnafil was used to cover 8,800 square feet of concrete.

Numerous Challenges

Important considerations on the project included safety and logistics, as well as the tight schedule. Safety was paramount, and a third-party safety monitor was on the site to ensure the safety plan was designed and executed properly. During the time between when the original skylights were removed and when their replacements installed, the voids in the roof deck needed to be cordoned off and covered according to OSHA regulations. Personal fall arrest systems were used on the pyramids and outside of the safety perimeter, which was marked with flags. “With the promenade, you had a wide concrete eyebrow, so it made it easier to set up the safety lines and keep everyone safely away from the edge,” Owens notes.

This aerial photo taken before the restoration project shows the copper roofs with their green patina. Photos: SkySite Images

“Safety is a key concern as on all jobs, but this one in particular was highly visible out the windows of the nearby Department of Labor,” Owens continues. “We were paid a courtesy visit and agreed with them that an on-site safety meeting conducted by their personnel might be useful. The owner allowed us use of one of their auditoriums and we had a very productive half-day meeting for all trades. Every week we had a meeting with a state construction monitor.”

A scaffolding system was set up that offered secure roof access, but there was only one point for loading and unloading material, so logistics at the site were a concern. “We had to use wheelbarrows and roof carts to transport materials back and forth to the scaffolding tower,” Tenoever notes. “Between the removal of the original roof and the installation of the multiple layers of the new roof system, over 150,000 square feet of roofing materials were moved by hand over an average distance of approximately 200 feet.”

Loading and unloading added another wrinkle to the complicated schedule. “The schedule was based on when the legislature was scheduled to come back to town—not how long the job was supposed to take,” Owens says. “We were all concerned with the ambitious time frame and $1,000 a day liquidated damages included with this job.”

Willers cited excellent communication as one of the keys to completing the project on time. “Fortunately, the project managers for the general contractor and other trades were highly organized individuals,” Willers says. “Regular site meetings were detailed and thorough. Although setbacks did occur, communication kept the ball rolling.”

The roof system on the building’s iconic copper clad pyramids was removed and carefully recreated, matching the original design while adding a vented cavity and increasing the thermal insulation. Photos: SkySite Images

A Unique Experience

Copper removed from the existing roof was salvaged and recycled, notes Willers, with the exception of a few pieces that

were cut into the shape of the state of North Carolina to serve as mementos of the unique project. “We’re very proud of the design and the outcome—and the assistance we got from all of the contractors involved,” Willers says. “We had some pretty heavy rains after the project was completed, including some high winds, and there were no leaks.”

Tenoever also looks back on the project with pride. “A one-of-a-kind roof system was custom built and delivered on schedule and with the owner and designer’s praises,” he says. “Taking something so amazing and restoring it to the beauty it originally had—we all get a kick out of that.”

TEAM

Design and Engineering Services: Raymond Engineering, Raleigh, North Carolina, RaymondLLC.com
General Contractor: Owens Roofing Inc., Raleigh, North Carolina
Metal Roofing Contractor: The Century Slate Company, Durham, North Carolina, CenturySlate.com
Leak Testing: Innovative Roof Services, LLC, Raleigh, North Carolina, IRS-LLC.net

MATERIALS

Metal Roof System
Copper: 20-ounce copper sheet metal
Vented Nail Base: Hunter Cool-Vent, Hunter Panels, HunterPanels.com
Underlayment: Carlisle WIP 300HT, Carlisle, Carlislewipproducts.com
Skylights: Wasco Skylights, Wascoskylights.com

Modified Bitumen Membrane Roof System

Membrane: Sopralene Flam 180 and Sopralene Flam 180 FR GR, Soprema, Soprema.us
Adhesive: Duotack, Soprema
Insulation: Sopra-Iso, Soprema
Cover Board: DEXcell, National Gypsum, NationalGypsum.com

Waterproofing System

Liquid Applied Membrane: RoofPro 641, Sika Corp., USA.Sika.com
Reinforcing Fabric: Reemat, Sika Corp.
Primer: Sikalastic EP Primer/Sealer
Extruded Polystyrene Insulation: Foamular 604, Owens Corning, OwensCorning.com

School Board’s Kite-Shaped Building Reflects Location’s History

The roof design for the Homewood Board of Education Central

The roof design for the Homewood Board of Education Central Office was inspired by the site, which is known as Kite Hill. Photos: Petersen Aluminum Corp.

The new home for the Homewood Board of Education Central Office in Alabama is a 14,500-square-foot modern structure that marks the first phase of a long-term development plan on a 24-acre site in Homewood, Ala., a suburb of Birmingham.

The contemporary structure was designed by Williams Blackstock Architects in Birmingham. “The roof design was inspired by the site, which is known as Kite Hill,” says architect Kyle Kirkwood. “It’s a spot where kids and parents come to fly kites. The roof, which slopes in two different directions and is kite-like in its appearance, is representative of the popular site.”

The building was conceived as a “garden pavilion” integrated within the site, intended to mediate between public and private property, and man-made and natural materials. The structure is nestled into a line of pine trees with a cantilevered roof extending just beyond the pines.

The design incorporates approximately 24,000 square feet of Petersen’s PAC-CLAD material in four different profiles. The main roof includes 16,000 square feet of Petersen’s Snap-Clad panels up to 60 feet long. The design also incorporates an interior application of the Flush panels by integrating them into the lobby area. In addition, 7,000 square feet of Flush panels were used in soffit applications. The panels were manufactured at Petersen’s Acworth, Ga., plant.

The roof design was complex, Kirkwood notes. “Since the roof slopes in two directions, we had an interesting valley situation where we had to coordinate the orientation of the seams,” Kirkwood said.

Challenging Installation

The roof also features two rectangular low-slope sections that were covered with a TPO system manufactured by Firestone Building Products. The roof systems were installed by Quality Architectural Metal & Roofing in Birmingham, which specializes in commercial roofing, primarily architectural metal and single-ply projects.

The building is nestled into a line of pine tree

The building is nestled into a line of pine trees near the edge of the site, adjacent to a residential area. The cantilevered roof was designed to help the structure blend in with the location and mediate between public and private property. Photos: Petersen Aluminum Corp.

Eddie Still, Quality Architectural Metal & Roofing’s vice president, helped prepare the budget for Brasfield and Gorrie, the construction manager on the project, so Still was prepared to go when his bid was accepted. “It was a job that consisted of a large portion of metal and a smaller portion of TPO,” he says. “Since we do both things, we were a good fit.”

The installation was made event tougher by the logistics of the site, according to Still. “The design of the metal roof was unusual, to say the least,” he says. “It had a valley that cut through it, and the panels were sloped in two directions. That’s not normally the case.”

The biggest obstacle was posed by the building’s location on a hill near the edge of the property line, immediately adjacent to a residential neighborhood. “The Snap-Clad panels were approximately 60 feet long, which isn’t a problem if you have the equipment to handle them,” Still notes. “It does pose a problem logistically when it comes to getting them into a tight area, and we definitely had that.”

Panels were trailered in and hoisted to the roof by a crane. “Once the panels were up there, the installation was fairly easy,” Still says. “The roof didn’t have a lot of changes in elevation or different plateaus built into it. The only quirky thing was that valley, and once you had that squared away, you were good to go.”

Coordinating penetrations with members of plumbing and HVAC trades is critical, according to Still. “On the metal roofs, we always stress that you’re trying to present an aesthetic picture for the building, so you want to minimize the penetrations so it looks cleaner,” he says. “You have to coordinate on site so if you have a plumbing exhaust stack, it comes up in the center of the pan and not on the seam.”

The metal roof incorporates approximately 24,000

The metal roof incorporates approximately 24,000 square feet of Petersen’s PAC-CLAD material in four different profiles. In addition, 7,000 square feet of Flush panels were used in soffit applications. Photos: Petersen Aluminum Corp.

A small section of metal roof near the entryway was made up of mechanically seamed panels. “The reason we used Tite-Loc panels on that portion of the roof was because of the low slope,” Still says. “We used the same width panel, so it looks identical, but the seams are different. They are designed to work on systems with slopes as low as ½:12.”

Quality Architectural Metal & Roofing also installed the Firestone self-adhered TPO roof system on two low-slope sections of the roof, totaling approximately 3,000 square feet.

Still looks back on the completed project with pride. “Our niche would be a building like this one, which has TPO or some other membrane roofing and metal,” he says. “We’ve been in business 33 years. We have a well-deserved reputation for the type of work we do. In the bid market things are price driven, so more often than not, price is the determining factor. But in larger projects and work that’s negotiated, the G.C. is going to opt to choose people to solicit pricing from who have a history of doing successful projects with them.”

TEAM

Architect: Williams Blackstock Architects, Birmingham, Ala., Wba-architects.com
Construction Manager: Brasfield and Gorrie, Birmingham, Brasfieldgorrie.com
General Contractor: WAR Construction Inc., Tuscaloosa, Ala., Warconstruction.com
Roofing Contractor: Quality Architectural Metal & Roofing Inc., Birmingham, Qualityarch.com
Metal Roof System Manufacturer: Petersen Aluminum Corp., Pac-Clad.com
Low-Slope Roof Manufacturer: Firestone Building Products, FirestoneBPCO.com

New Construction Project Tests Contractor’s Mettle

Photos: Lynn Cromer Photography, Ferris, Texas

Photos: Lynn Cromer Photography, Ferris, Texas

Independence High School in Frisco, Texas, was conceived as an impressive new construction project on a tight schedule. The standing seam metal roof of the building was a key component in the architectural planning, as it was designed to provide aesthetic appeal for the massive structure while minimizing the view of mechanical equipment for passers-by on the ground.

The roof also was comprised of several low-slope sections, which were covered with a modified bitumen system. Both the metal and modified systems contributed to the building’s energy efficiency, helping the project achieve LEED Silver status.

The roof systems were installed by the Duncanville, Texas, branch of Progressive Roofing Services. Randy Dickhaut, the company’s general manager, indicated the project was completed in approximately one year—an ambitious schedule for a job of this size. “It was a challenging new construction job,” he says. “There were a lot of logistics involved, but in general, the job went very well.

A Tale of Two Roofs

The first goal of the project was drying in the metal decking. A two-ply, hot–mopped modified bitumen system manufactured by Johns Manville was installed on 24 decks totaling approximately 195,000 square feet of low-slope roof area. The system was applied over two layers of 2 1/2-inch polyiso insulation and 1/2-inch JM Securock cover board. The system was topped with an Energy-Star rated cap sheet, DynaGlas FR CR.

Photos: Lynn Cromer Photography, Ferris, Texas

Photos: Lynn Cromer Photography, Ferris, Texas

In the nine sections where the 88,000 square feet of metal roofing was installed, two layers of 2 1/2-inch polyiso insulation were attached, along with plywood decking and self-adhering TAMKO TW Tile and Metal underlayment. The standing seam metal roof system was manufactured by McElroy Metal, and the company provided the manpower and equipment to roll form the panels on the job site. Roof panels were the company’s 22-gauge Maxima 216 panels in Weathered Galvalume. These panels were complemented by 24-gauge Flush panels on walls and soffits.

The roll former was mounted on a scissor-lift truck. The eaves of the building were approximately 36 feet off of the ground, so a sacrificial panel was used to create a bridging effect to help guide panels to the roof. “Basically, the roll former went right along with us,” Dickhaut recalls. “We would pull 30 or 40 squares of panels, then drop the machine and move to the next spot. We were able to roll the panels right off the machine and lay them in almost the exact spot they would be installed.”

Photos: Lynn Cromer Photography, Ferris, Texas

The length of some of the panels posed a challenge, and as many as 12 crew members were needed to guide them into place for installation. In the steep-slope sections, crew members had to be tied off 100 percent of the time, so retractable lanyards were used to help keep safety lines out of the way.

The roof was mechanically seamed using a self-propelled industrial roof seamer manufactured by D.I. Roof Seamers. “We call it walking the dog,” notes Dickhaut. “One man can operate the equipment, and he just walks it every inch of every seam.”

The metal roof was designed to hide the mechanical equipment for the building, and Progressive Roofing completed work on two deep mechanical wells before the HVAC equipment was installed. “In the wells, we used McElroy’s Flush panels for the vertical surfaces and transitioned to the metal roofing,” notes Dickhaut. “In the bottom of the mechanical wells, we installed the Johns Manville modified roof and flashed the curbs.”

Rising to the Challenge

Dickhaut points to a few challenges on the job, including the length of the panels and the weather. “Overall, the job went really well,” he says. “The architects did a great job on the design, and McElroy has really good details. It was a pretty straightforward process. There was a lot of wind and rain we had to cope with. When you have a 100-foot panel that you can’t kink or scratch, it can get kind of tricky. You just have to be very careful.”

Photos: Lynn Cromer Photography, Ferris, Texas

Photos: Lynn Cromer Photography, Ferris, Texas

The Texas weather made the schedule unpredictable. “We were on that job over a year, so we caught all four seasons,” he says. “Weather had a huge impact. We dealt with extreme heat, humidity, snow, ice, mud, monsoon-type rains. Texas throws anything and everything at you.”

Whatever the conditions, Progressive Roofing was ready. “We show up locked and loaded,” Dickhaut says. “We attack it. We have seasoned veteran roofers that lead the pack. On that particular project, we had an architect, roofing consultants, an owner’s rep, and a general contractor. We would also bring in the McElroy and JM reps periodically for consultation. It’s really a team effort.”

TEAM

Architect: Corgan Associates Inc., Dallas
General Contractor: Lee Lewis Construction Inc., Dallas
Roofing Contractor: Progressive Roofing Services Inc., Duncanville, Texas

Seal Pipe Penetrations with Pitch Pan Kits

R.M. Lucas Co. adds the #409 PolyPan kits to its line of pitch pan products.

R.M. Lucas Co. adds the #409 PolyPan kits to its line of pitch pan products.

R.M. Lucas Co. has added the #409 PolyPan kits to its line of pitch pan products. PolyPans are lightweight, strong and UV-resistant interlocking pitch pans that are suitable for most types of low-slope roofing. The PolyPans, used in conjunction with the Lucas #9600 Sealant and #4500 Semi-Self Leveling Sealer, make sealing of pipe penetrations fast and economical. With up to a 20-year warranty, the #409 PolyPan kits are a great option when sealing pipe penetrations.

Carefully Select Roofing Materials to Maintain the Character of Historic Buildings

Selecting a historically appropriate roofing material is often restrictive as a simple matter of economy. Not everyone can afford a new slate roof. But individually landmarked structures and those in local historic districts are often monitored by historic district commissions (HDCs) that typically require property owners to replace in-kind or with an otherwise historically appropriate material.

Although the preference is replacement in-kind, an intelligent argument for an alternative can often be made. The HDC can consider other materials that were available at the time of construction, as well as what buildings of similar style in the community have on their roofs. A Queen Anne may have started with a polychromatic Vermont slate roof, but the commission can consider that nearby Queen Annes have monochromatic Monson slate or even cedar shingles. A Greek Revival may have a silver-coated tin roof, but few would argue with a homeowner willing to replace it with standing-seam copper. Let’s look at several American building styles and the materials used to roof them.

Colonial Styles, 1620 to 1780

From the New England Salt Box to the Dutch-vernacular homes of upstate New York, the earliest structures in the American colonies were roofed with wood shingles.

From the New England Salt Box to the Dutch-vernacular homes of upstate New York, the earliest structures in the American colonies were roofed with wood shingles.


From the New England Salt Box to the Dutch-vernacular homes of upstate New York, the earliest structures in the American colonies were roofed with wood shingles. It is a myth they were covered with hand-split shakes because these sometimes do not hold up well. Wood shingles were easily made by planing down the shakes to a uniform thickness for ease of installation.

In the Northeast, Eastern white cedar was the typical material used while cypress was often used in the South. Western red cedar was not used much in the eastern U.S. until after the 1850s and should not be considered appropriate on a circa-1820, Federal-style structure in Connecticut. Eastern white cedar, however, rarely lasts longer than 10 years in a roofing application. Instead, preservation architects now specify Alaskan yellow cedar. Predominantly distributed from British Columbia, this dense wood is favored because of its longevity and because it develops a silvery patina, like Eastern white cedar, within one year.

Federal and Neoclassical Styles, 1780 to 1820

Many of these buildings have low-slope roofs and are often obstructed by a balustrade that runs across the top of the eaves. In congested, urban environments, the roof may not even be visible from the street. This raises the obvious question: What needs to be done when an element of the exterior is not within the street view? Most HDCs use that standard question to limit their purview over a proposed alteration. If your roof falls into this category, then you should pick the most enduring and sustainable material you can afford.

These structures were not often originally covered in slate, though many are today. Original roofs were wooden shingles—less than ideal on a roof with a shallow pitch. In limited instances, standing-seam or flat-lock-seamed roofs are seen on these building styles. To find out what’s appropriate, check out roofs on structures of the same style in your neighborhood and neighboring communities.

The mansard roof is the character-defining feature of the Second Empire style. A mansard is essentially a hipped gambrel. The lower roof, between the eaves and upper cornice, is most often covered in slate.

The mansard roof is the character-defining feature of the Second Empire style. A mansard is essentially a hipped gambrel. The lower roof, between the eaves and upper cornice, is most often covered in slate.

Greek Revival, 1820-50

This style also features a low-slope roof, typically 4:12. Although the original roof material may have been wooden shingles, many of these roofs in the Northeast were replaced by a more sustainable material long ago. Flat-lock tin or terne-coated steel were typical from the late 1800s on. Because many of these structures also have box gutters at the eaves, keep in mind that relining these systems is costly and will need to tie in to the new roof material. (See “Traditional Gutter Systems in North America”, March/April issue, page 56, or bit.ly/1Mw7Qek.) It is not uncommon for an affordable membrane, like EPDM or TPO, to be used on the majority of the roof while a costlier appropriate material, like copper, covers the visible, projecting “porch” roof.

PHOTOS: Ward Hamilton

Pages: 1 2

RCMA Began Speakers Bureau with Presentation for CRSMCA District Meeting

The Roof Coatings Manufacturers Association (RCMA) kicked off its Speakers Bureau program with a presentation by Joseph Sorrentino, Uniflex/Sherwin Williams, for the Carolinas Roofing and Sheet Metal Contractors Association’s (CRSMCA) district meeting. The CRSMCA district meeting took place in Concord, N.C., at the Embassy Suites Charlotte-Concord. RCMA’s Reflective Roof Coatings: Cool Stories presentation helped CRSMCA to hone its meeting focus on the key benefits and environmental importance of reflective roof coatings used on low-slope roof systems.

“Presenting for CRSMCA brought back fond memories, as I began my roofing career with CRSMCA in 1977,” says Sorrentino. “This was a great opportunity to educate an audience of roofing contractors, distributors and manufacturing representatives on the benefits of reflective roof coatings.”

RCMA is an approved continuing education provider with the American Institute of Architects (AIA), RCI Inc. and the U.S. Green Building Council (GBCI). By attending RCMA’s Reflective Roof Coatings: Cool Stories course, attendees qualify to earn 1 AIA General Learning Unit hour (1 LU hour) as part of AIA’s continuing education system, 1 RCI continuing education hour (CEH), or 1 GBCI continuing education hour (1 GBCI CE hour).