New NHL Practice Facility and Community Center Sports Vegetative Roof

The American Hydrotech Extensive Garden Roof Assembly was installed on two sections of the roof. The system was topped with pre-grown mats featuring mature sedum plants. Photo: American Hydrotech Inc.

The Chicago Blackhawks have captured the hearts of the city of Chicago along with three Stanley Cups in the last decade. The Blackhawks routinely lead the league in attendance at the United Center, and fans were excited when the team announced it would build a new 125,000-square-foot training facility and community center in downtown Chicago.

Completed earlier this year, the MB Arena features two NHL-sized ice rinks and other amenities including a fitness center, dining options, and spaces that can be rented for outings and events. The facility is the practice site for the Blackhawks and also hosts youth hockey, adult hockey leagues and public skating.

When plans for the project were unveiled, architects and planners mandated the facility meet or exceed all green and sustainable standards for the city. Chicago has been a leader in promoting vegetative roofs to help control storm water runoff, and this new construction project was no exception. The arena includes the construction of 24,000 square feet of green roof systems to complement the structure’s 68,000-square-foot main roof. A 60-mil TPO system manufactured by Carlilse SynTec was specified for the upper roof assembly, and plans called for an American Hydrotech Extensive Garden Roof Assembly to be placed on two lower sections of the roof.

The Garden Roof Assembly

Architect HOK worked with American Hydrotech during the design stage to select roofing components and plants that were optimized for the climate conditions and the building’s structural limitations.

According to Dennis Yanez, national marketing manager, American Hydrotech, and Kevin Serena, garden roofing technical sales coordinator for the central region, the structure’s metal deck necessitated a lightweight system.

The 125,000-square-foot facility 24,000 square feet of green roof systems that complement the structure’s 68,000-square-foot main roof. Photo: Chicago Blackhawks.

“Our 4-inch extensive garden roof system was ideal for this project,” says Yanez. “Since part of this project had a metal deck, there are more structural capacity concerns than with a concrete deck, so we were able to put together a lightweight, built-in-place system.”

The assembly consists of a hot-applied rubberized asphalt membrane, MM6125, which is applied to the roofing substrate to form a monolithic coating. It is topped with a root barrier and Dow Styrofoam insulation. The system also incorporates Hydrotech’s Gardendrain GR15, a molded polyethylene panel designed to retain water, filter fabric, lightweight growing media, and mature plants.

The plants are installed in the form of the InstaGreen Sedum Carpet, a pre-grown mat that comes in 25-square-foot rolls. It contains between nine and 15 different types of sedum and provides instant coverage when it is installed.

Key benefits of the system include reducing the urban heat island effect, purifying the air, and limiting storm water runoff, notes Yanez. “The Extensive Garden Roof Assembly is able to capture more than 1.5 inches of water on the roof, which plays a major role in storm water management,” he says.

The system also protects the membrane from ultraviolet (UV) degradation and damage from wind-blown debris. “Most importantly, for us, a garden roof is just another version of a PMR, or protected membrane roofing,” says Yanez. “Because the membrane is always in a PMR application, with Dow insulation over it, whatever ballast — whether it’s gravel ballast, or architectural pavers, or the garden roof assembly — is in place makes it literally impossible for the membrane to get damaged. It also mitigates the climate swings, keeping the membrane at a more constant temperature year-round.”

This system has a proven track record, according to Yanez. “We’ve been doing this going back 50 years on parking decks under regular topsoil, where weight wasn’t a concern,” he points out. “This is just a more modern version of that, but we’re putting it on the 4th, or the 14th, or the 99th floor.”

The Roofing Installation

All American Exterior Solutions, Lake Zurich, Illinois, is an approved applicator for both key manufacturers. The union contractor installed the Carlisle TPO system on the building’s main roof and the Hydrotech green roofs on the two lower roof levels.

Willie Hedrick, division manager at All American Exterior Solutions, notes that the TPO roof was installed first. “The deck was acoustic, so first we had to lay strips insulation in the flutes over the entire main roof,” he says.

The lightweight growth media was lifted to the roof in 2-yard totes. Photo: Christy Webber Landscapes.

Areas that housed mechanical equipment were reinforced with two layers of 5/8-inch DensDeck from Georgia-Pacific. Two layers of 2.6-inch insulation were then installed, followed by the 60-mil TPO, which was mechanically attached using the RhinoBond system from OMG Roofing Products. The attachment system uses induction welding technology to attach the membrane to the fasteners and plates that secure the insulation — without penetrating the membrane.

The main roof was originally designed as fully adhered system, but work began in January, and the temperature constraints ruled out some adhesives. “Once we made the switch to RhinoBond, we were able to install the membrane even though we did it during the winter,” Hedrick says.

Most of the TPO roof was surrounded by high parapet walls, and in other areas the safety perimeters were marked with flags. “At a few points at the highest points of the main roof we had to put up some the flags, and if you were outside of the flags you had to be tied off,” notes Hedrick. “The mid-roofs had short parapet walls, and on those roofs, we set up flags and had 100 percent fall protection outside the safety perimeter. For the lower green roof, we put guardrails up on the parapet to eliminate the fall hazard.”

The Garden Roofs

After the TPO sections were installed, work began on the extensive garden roof assemblies. The mid-roof had a metal deck, so the first step was to screw down 5/8-inch USG Securock cover board and strip in the seams. “At that point, we installed the liquid-applied membrane and the protection board,” Hedrick says.

The second green roof was installed over a concrete deck, so the application was a bit different. The membrane was applied directly to the concrete. A late change was made in the configuration of the lower green roof to take advantage of the space. “The owner decided to add a terrace to the lower green roof so people could walk out and see the roof and views of the city,” Hedrick recalls.

Before the growing media and plants were added, electronic field vector mapping (EFVM) was conducted by International Leak Detection to determine if there were any voids in the membrane. “You’ve got to confirm everything is 100 percent watertight before we start setting the components down,” Hedrick says. “We usually do the test and start putting the components down the next day to minimize exposure. The subcontractor we worked with to do the landscaping, Christy Webber, performed well. Since some of the components are loose laid, we worked with them to put down enough soil to hold everything in place. We worked hand-in-hand getting the all of the components and soil in.”

The Landscape Work

Jim Waldschmidt, project manager for Christy Webber Landscapes, Chicago, oversaw the installation of the lightweight growing media and sedum mats on the roof. Christy Webber is a full-service union landscaping company, and Waldschmidt notes that roofing work is a small but growing share of the company’s business. “We work with a few different commercial roofers,” he says. “This year we’ve done maybe 10 commercial projects.”

After the growing media was evenly spread out, the sedum mats were laid into place by crews from Christy Webber Landscapes. Photo: Christy Webber Landscapes.

Logistics at the site made for an easy delivery and setup — an unusual situation in downtown Chicago. “We were able to deliver the soil almost a week before we were scheduled to go out there, so we had everything on site and knew we wouldn’t have to worry about waiting,” Waldschmidt notes. “We just had to bring in a crane and lift up the soil bags. We had a pretty easy installation compared to other green roofs we’ve done.”

Growing media was lifted to the roof in 2-yard tote bags, which were cut open to disperse the contents. Three days after the growing media was in place, Christy Webber crews returned to install the sedum mats. “The sedum mats are delivered on pallets almost like the way a roll of sod would be delivered,” says Waldschmidt. “We just had to set the pallets on the roof, pull off the sedum mats and unroll them.”

A temporary irrigation system was set up to help the plants get established in the hot July temperatures. “Everything looks great now,” Waldschmidt says. “All of the sedum up there is thriving.”

Growth Sector

In this high-profile project, with a high-profile owner, making sure the system was error-free was critical, notes Serena. “Chicago is definitely the leader in vegetative roofs, and has been for more than 10 years,” he says. “This is another prime example. There was never a question whether this building would have a green roof on it. It’s a credit to Chicago, and it is a credit to the Chicago Blackhawks.”

Hedrick is proud to be part of the green roof movement. “I like the challenge, and I like the diversity,” he says. “When the Blackhawks went to the Stanley Cup championship and the blimp was hovering over the arena, I could see a couple of my projects on TV. It reminded me of all the time, effort, attention to detail, and collaborative hard work that it took to produce the final product. We’re turning typically unusable roof areas into useful space for amenities.”

The key driver of green roofs is storm water management, notes Yanez, but turning rooftops into useful space is another key benefit. “We’re seeing more and more city incentives for storm water management,” he says. “In urban areas, people are also taking advantage of existing space with green roofs. It’s a growing industry — pun intended.”

TEAM

Architect: HOK, Chicago, www.HOK.com
General Contractor: James McHugh Construction, Chicago, www.McHughConstruction.com
Roofing Contractor: All American Exterior Solutions, Lake Zurich, Illinois, www.AAEXS.com
Landscape Contractor: Christy Webber Landscapes, Chicago, www.ChristyWebber.com

MATERIALS

Garden Roof System:
Cover Board: Securock Gypsum-Fiber Roof Board, USG, www.USG.com
Membrane: MM6125 hot rubberized asphalt membrane, American Hydrotech Inc., www.HydrotechUSA.com
Protection Sheet: Hydroflex 30, American Hydrotech Inc.
Root Barrier: Root Stop, American Hydrotech Inc.
Insulation: DOW Styrofoam, DOW Chemical, www.Dow.com
Drain Board: Gardendrain GR15, American Hydrotech Inc.
Filter Fabric: System Filter fabric, American Hydrotech Inc.
Growing Media: LiteTop Engineered Growing Media, American Hydrotech Inc.
Plants: InstaGreen Sedum Carpet, American Hydrotech Inc.

TPO Roof System:
Membrane: 60-mil TPO, Carlisle SynTec, www.CarlisleSyntec.com
Cover Board: DenDeck, Georgia-Pacific, www.BuildGP.com
Attachment System: RhinoBond, OMG Roofing Products, www.OMGroofing.com

Roof Restoration Project Brings Back Luster to Quicken Loans Arena

The 170,000-square-foot roof of Quicken Loans Arena was completely restored using a liquid-applied system from Tremco Roofing. Photos: Tremco Roofing and Building Maintenance

Re-roofing sports and entertainment venues presents its own set of challenges. Sports arenas usually host concerts and other events, so scheduling and logistics can be difficult. Quicken Loans Arena in Cleveland — also known as “The Q” — is home to the Cleveland Cavaliers of the NBA, and it hosts some 200 other diverse events every year, including concerts and conventions. In 2015, realizing the roof was reaching the end of its useful life, the owners looked for advice on their next move. A team of roofing professionals recommended a roof restoration system that would provide the protection and recreate the aesthetics of the original roof — and keep disruption to the facility at a minimum.

Ohio companies stepping up to help the home team included architect Osborn Engineering, headquartered in Cleveland; roof consultant Adam Bradley Enterprises of Chagrin Falls; roofing manufacturer Tremco Roofing and Building Maintenance, headquartered in Beachwood; and roofing contractor Warren Roofing & Insulating Co., located in Walton Hills. After comprehensive testing revealed that more than 90 percent of the roof could be restored, they developed a plan to clean, repair and completely restore the 170,000-square-foot main roof of Quicken Loans Arena using a liquid-applied system from Tremco Roofing.

John Vetrovsky of Warren Roofing and Joe Slattery of Tremco Roofing shared their insights on the project with Roofing magazine. Both men were brought in during the planning stages of the project and saw it through to completion. “We were helping to budget the project with Adam Bradley and Osborn Engineering,” notes Vetrovsky. “They were asking about a few different systems, and the Tremco system was the best fit for the project.”

Warren Roofing has served the greater Cleveland and Akron area since 1922, and Tremco’s roots in northeast Ohio go back to 1928. Warren Roofing served as the general contractor and roofing contractor on the project. The scope of work included updates to the lightning protection system, the safety cable system, and the heat trace system used to melt snow in the gutters.

Repairing the Existing Roof

The existing system was the structure’s original roof. It was 24 years old, and consisted of a mechanically attached hypalon membrane over two layers of polyisocyanurate insulation totaling 3 inches. The roof membrane was showing some wear, and sections had sustained damage from an interesting source: fireworks from nearby Progressive Field, home of the Cleveland Indians, launched after the Indians hit home runs. After the damage was detected, the team changed the direction the fireworks were launched, and the problem ended.

Crews from Tremco Roofing cleaned the roof using the company’s RoofTec system, which recaptures the water and returns it to a truck to be filtered. Photos: Tremco Roofing and Building Maintenance

Despite the damage, visual analysis and a nuclear roof moisture test using a Troxler meter confirmed the roof was an excellent candidate for restoration. “There was some wet insulation and warped insulation, and we marked off those areas that had to be replaced,” notes Slattery. “It was a small fraction of the total job.”

Crews from Warren Roofing removed and replaced the damaged insulation, cutting through the membrane all the way down to the existing 6-mil vapor barrier on the deck. “All of that insulation had to be stair-stepped back so we could properly lap in the new material,” Vetrovsky says. “We got rid of all of the damaged insulation, and we repaired the vapor barrier. Then we staggered the two new layers of insulation, matching the existing thickness.”

Where possible, the existing membrane was pulled back and glued into place. In sections where new membrane was needed, crews adhered pieces of EPDM.

The plan specified adding the fasteners in the existing roof and any repaired sections before the coating system was applied. Tremco Roofing conducted uplift testing through Trinity ERD to ensure the results met or exceeded the specified design. “There was a significant upgrade to the fastening,” Vetrovsky says. “Because of the shape of the building, the perimeter enhancement was probably the greatest I’ve ever seen.”

Screws and 3-inch plates were used. In the field, the minimum was 4 feet on center, 12 inches apart. In the perimeter, fasteners were installed 2 feet on center, 8 inches apart. “It worked out nicely because the fastening ended up in the middle of the sheet, and now the sheet has fasteners that are original at the seam, and a foot or two over, there is a row of new fasteners,” notes Vetrovsky.

Cleaning Up

Prior to the fasteners being installed, the membrane was cleaned by crews from Tremco Roofing using the company’s RoofTec system. “We cleaned the membrane no more than 30 days ahead of what Warren Roofing was doing,” notes Slattery. “We had to mobilize at least three times to clean the roof so the time elapsed would never be more than 30 days.”

The three-step restoration process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. Here, crews embed the fiberglass mat in the base coat. Photos: Tremco Roofing and Building Maintenance

The cleaning solution is applied using a custom-designed tool that looks like a floor polisher. It has a 2-foot diameter head that spins to clean the surface and a vacuum that recaptures the water, which is returned via hoses to a truck so contaminated waste water, environmental pollutants and high-pH cleaning solvents can be filtered out. “All of that water goes back into the sanitary system after it’s filtered,” Slattery explains. “It does not go into the sewer system.”

“It’s very fast, it’s very effective, and it’s very efficient because you can easily see the areas that have been cleaned,” notes Vetrovsky. “With power washing, you don’t have any way to filter the water.”

The biggest challenge on the cleaning portion of the project was the arena’s sheer size. Approximately 500 feet of hoses were needed to supply water and return it to the truck for filtering.

Cleaning of the substrate is a crucial step, according to Vetrovsky. “The system really does a nice job cleaning the membrane, and that is the key to any restoration project,” he says. “You’re only as good as the surface you’re applying it to.”

Applying the New Roof System

After the sections were cleaned, crews installed the liquid-applied AlphaGuard MT system. The three-step process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. In this case, the primer was applied with rollers. “The area that we primed each morning was the section we would apply the first coat of AlphaGuard MT with the fiberglass mat that afternoon,” Vetrovsky says. “We did not prime ahead. We didn’t want to take the chance of dust adhering to the primer.”

The top coat was applied with both rollers and spray equipment. Photos: Tremco Roofing and Building Maintenance

Care had to be taken with the schedule to complete the work efficiently. “Once the base coat is on, you have 72 hours to apply the top coat,” Vetrovsky explains. “We would install the base coat and the fiberglass mat for two to three days to get a big enough area. The topcoat would go on faster because you’re not embedding any mesh into it. You really had to always keep an eye on the future weather to make sure you could get the topcoat on within the 72 hours.”

The topcoat was applied with both rollers and spray equipment. After the topcoat was applied, crews installed a second coat with sand embedded in it as a wear surface. Because of the roof’s curved surface, walk pads were not feasible, so the sand was used to provide additional traction for any workers conducting ongoing maintenance.

The sand was broadcast by hand and back-rolled into the coating to maintain a uniform appearance. “Part of this project was to make sure the sand looks uniform when it is visible from a blimp overhead,” notes Vetrovsky. “That was a difficult task, but the guys did a great job.”

The roof features three different finish colors, which were custom designed to match the roof’s original color scheme. The main roof is light gray, with black under the large LED sign. The sections over the wings are white, as are the 2-foot-wide stripes.

“They wanted black under the new LED sign so it would really show the letters nice and clear, even during the day,” says Vetrovsky. “We also put the white stripes back to match the roof’s original appearance. That was a challenge, to keep everything straight. It’s hard to chalk lines on a curve, but it came out nice. Everything matches what the original roof looks like.”

Penetrations for the sign included round posts that held the rails about 2-1/2 feet above the roof level. The liquid-applied membrane made coping with details easy, according to Vetrovsky. “The liquid membrane makes the flashing details all one piece with the roof system,” he says. “We removed the existing boot flashings so that we could seal directly to the conduit or steel posts.”

Gutters, Lightning Protection and Safety Systems

The large commercial gutters also needed to be refurbished. The gutters were 4 feet deep and 4 feet wide, and were outfitted with a cable snowmelt system, which had to be removed. “The gutters had a lot of damaged insulation, so material in the gutter sections was 100 percent torn off,” notes Vetrovsky.

After the roof surface was cleaned, the restoration system was applied. The three step process consists of a primer, a base coat with a fiberglass mat embedded in it, and a topcoat. Photos: Tremco Roofing and Building Maintenance

In the gutters, tapered insulation was installed, and a cover board — DensDeck from Georgia-Pacific — was added for increased durability. New EPDM membrane was installed and cleaned prior to the three-step coating application. New heat trace cable was also installed.

The lightning protection system also required repair, and close coordination with the subcontractors was critical. “The existing lightning protection had to be removed to apply the new roof system, but we couldn’t remove it 100 percent, because we still had to have an active lightning protection system for the building,” says Vetrovsky. “We rearranged the lightning system and installed new stanchions to try to eliminate as many horizontal lines as we could.”

During construction, key to the safety plan was a perimeter barrier system, which was installed by workers who were 100 percent tied off. After the system was in place, workers inside the barricades did not need to wear personal fall arrest systems. “The entire perimeter had a barricade system put on before any material was even loaded,” Vetrovsky says. The company makes its own barricade sections, which are anchored to the parapet walls and gravel stop edges and feature a downward leg for added support.

As part of the project, crews also installed permanent safety equipment. “There was an existing tie-off system out there, but it was not a certified system and we couldn’t use it,” Vetrovsky says. “We brought that to the owner’s attention and replaced it with a new certified tie-off system manufactured by Guardian Safety.”

Challenging Schedule

Progressive Field and the Quicken Loans Arena are right next to each other, and logistics and scheduling around the stadiums was difficult. Work began in 2016 and finished in 2017, and the demanding schedule was made even more difficult when both the Indians and the Cavaliers made deep runs into the playoffs. In 2016, the Cavs became NBA Champions. But it was the Indians making it to the 2016 World Series that posed bigger logistical problems for the re-roofing project.

The restored roof recreates the original color scheme, which features three different custom colors. The main roof is light gray, with black under the large LED sign, while the sections over the wings stripes are white. Photos: Tremco Roofing and Building Maintenance

“The first part of the schedule was the most difficult, as we had the get the black coating on the roof under the sign prior to the playoffs,” Vetrovsky says. The sign covered approximately 30,000 square feet of roof area, and it was difficult to access the roof surface beneath it. “Crews had to work on their hands and knees to apply the coating beneath the steel framing. That was towards the fall, when the weather started changing, and one of the biggest hurdles was just getting the roof dry in the morning. It got colder and colder as we got down to the wire, but we made our deadline for the work under the sign.”

The staging area was also limited, and the crane could only lift material to one section of the roof. Some material had to be moved by hand some 2,000 feet. “It was an awfully long walk from one end of that roof to the other,” Vetrovsky recalls.

Concerts and other events held during the construction cycle made the schedule even more challenging. “The most notable event was probably the Republican National Convention, which totally shut the site down for more than a week because of security,” notes Slattery.

Concerts usually necessitated loading in the early morning and clearing the staging area by 8 a.m., but usually work could continue during the day. “We had to do a lot of coordination to make sure we had what we needed to work the entire day and also not go against our commitment to the owner that we would not work past certain hours,” Vetrovsky says. “Many of the special events started after 7 p.m., so we would be long gone by then.”

Championship Caliber

The project was wrapped up earlier this year. Vetrovsky and Slattery agree that the system chosen was a great fit for this project for several reasons. With restoration, there is less noise, less disruption, and less equipment than with a re-roofing project, and the roof has a warranty for the next 20 years. The process also limits negative impact on the environment by preventing removal and disposal of the old roof system.

“The weight was also a factor,” notes Vetrovsky. “With the existing structure, there wasn’t a lot of room for a different type of roof system with heavy cover boards. This roof system was perfect because it doesn’t add a lot of weight.”

The coating also minimized installation time, notes Slattery. “The disruption of a roof replacement in a hospitality setting like that, where they need 250 days of revenue stream, restoration becomes a real attractive option,” he says. “I can’t think of one day where we really disrupted anything.”

Vetrovsky points to his talented crews as the key to meeting tough schedules with top-quality production “What we can offer is skilled labor,” he says. “We’re a union contractor and our guys are well trained. The harder, the better for us. We can handle projects that most other contractors won’t even put a number to — this project being one of those.”

He credits Adam Livingston, a third-generation foreman for Warren Roofing, for his work on the project.  “With his experience and attention to detail, we were able to complete this project on time, meet the expectations of the client and Tremco, and match the unique aesthetic requirements of the roof,” says Vetrovsky. “We have a lot of great employees who take pride in their work. Take all of that together, that’s why we can be successful on projects like the Quicken Loans Arena.”

The Cavaliers taking the NBA Championship during the project only added to the excitement. “It’s a great feather in our cap,” notes Slattery. “Restoration is a growing segment of the market. Instead of letting the clock run out on these roofs, if you catch them at the right time, it can be a phenomenal way to keep costs down and it’s good for the environment because it’s not adding waste to landfills.” 

TEAM

Architect: Osborn Engineering, Cleveland, Ohio, www.osborn-eng.com
Roof Consultant: Adam Bradley Enterprises, Chagrin Falls, Ohio, www.adambradleyinc.com
General Contractor: Warren Roofing & Insulating Co., Walton Hills, Ohio, www.warrenroofing.com

MATERIALS

Roof Cleaning System: RoofTec, Tremco Roofing, www.tremcoroofing.com
Roof Restoration System: AlphaGuard MT, Tremco Roofing

PVC System Is the Answer for U.S. Bank Stadium Roof

U.S. Bank Stadium is topped with a PVC roof system that display’s the company’s logo. Photo: Johns Manville

When discussions began about the new U.S. Bank Stadium in Minneapolis, Minnesota, there was a request for an outdoor stadium. However, state and local government provided funding specifically for an indoor stadium that would be able to host major events like the professional football championship game and the college basketball championship game. As a result, a translucent roof and mobile front windows were designed to allow natural light to enter the stadium and to give fans a view of downtown Minneapolis. The mobile windows also allow fans to experience outdoor elements while providing protection from snow, rain and cold winter weather. The roof design was developed taking into consideration the budget and the region’s weather; it would be costly to make it retractable, and a sloped roof lends to a more secure option for snowy weather.

Challenging Task

Berwald Roofing Company Inc., headquartered in North St. Paul, Minnesota, installed an adhered PVC roof system manufactured by Johns Manville over the structure’s metal deck. In all, 280,000 square feet of grey 60-mil PVC were installed. The system also included a vapor barrier and two layers of 1.6-inch ENRGY 3, a rigid roof insulation board composed of a closed-cell polyisocyanurate foam core with fiberglass reinforced facers. Half-inch DensDeck Prime cover board from Georgia-Pacific was also installed.

The roofing portion of the project began in April 2015, with an aggressive completion deadline of November 1, 2015. The schedule and logistics on the project posed major hurdles. “Getting material 300 feet up to the roof was our biggest challenge,” says Berwald Roofing Senior Project Manager Steven Hegge. “A big part of that was scheduling time to share the cranes with the iron workers and general contractor.”

Another challenge was storing material during the installation due to the limited amount of space on the roof. “All the decking had to be installed as we went along, just before roof installation,” Hegge states. “We were on a very tight time schedule in this multiple-phase construction project.”

“The general contractor and Berwald Roofing have worked with Johns Manville on numerous stadium projects in the past and preferred to use JM PVC on this complicated stadium project,” notes Johns Manville sales rep Bob Deans. “This application is on a 3.75-inch to 12-inch slope on the north side of the building, which adds to the difficulty of installing a fully adhered PVC roof assembly.”

The Solution

Due to restricted loading space at the jobsite, materials arrived to Berwald’s yard directly from the manufacturer. They were then loaded on Berwald Roofing semi-trucks each day for delivery. Once they arrived at the site, they were immediately lifted to the roof via tower cranes and installed in the most efficient time frame, to meet the owners expected installation timeline.

The stadium seats approximately 65,000 people for most games. However, this space is built to be expandable to hold up to 73,000 attendees for special events such as the professional football championship game, which the stadium is scheduled to host on February 4, 2018, and for events like the college basketball championship game, which will be held there in 2019. U.S. Bank’s logo is prominently displayed on the rooftop. Charcoal grey 60-mil PVC membrane was cut to specification using a computerized cutter to create an exact replica of the U.S. Bank logo. Berwald Roofing then adhered the charcoal grey PVC on top of the grey 60 mil PVC membrane using JM PVC low-VOC membrane adhesive and then heat-welded the edges of material to finish the application of the logo.

TEAM

Architects: HKS Inc., www.hksinc.com; Studio Hive, www.studiohive.com; Studio Five; and Lawal Scott Erickson Architects Inc., http://lse-architects.com
General Contractor: Mortenson Construction, Minneapolis, Minnesota, www.mortenson.com
Roofing Contractor: Berwald Roofing Company Inc., North St. Paul, Minnesota, https://berwaldroofing.com

MATERIALS

Roof System: 60-mil PVC, Johns Manville, www.jm.com/roofing
Vapor Barrier: Johns Manville
Insulation: ENRGY 3® Insulation, Johns Manville
Cover Board: DensDeck Prime, Georgia-Pacific, www.gp.com

Three Sioux City Community School District Projects Are Part of Long-Term Plan

In 2017, Winkler Roofing crews re-roofed portions of two high schools and one elementary school. Shown here is an aerial photo of East High School. Photos: Mule-Hide Products Co. Inc.

For the Sioux City Community School District (SCCSD) in Sioux City, Iowa, the final dismissal bell of the school year marks more than the start of summer break for students and staff. It also signals the beginning of roofing season.

In addition to routine maintenance and repairs, each summer brings at least one major roofing project for the district and its 24 facilities. Existing roofs that have fallen out of warranty coverage are replaced. The district also has completed a steady stream of construction projects over the past 16 years, replacing aging schools to meet evolving needs.

District enrollment has increased by several hundred students over that timeframe and now stands at more than 14,500. SCCSD also has expanded its programming, creating specialty elementary schools focusing on STEM (science, technology, engineering and math), computer programming, environmental sciences, the arts, and dual-language education in English and Spanish. These specialties continue with middle school exploratory classes and eventually lead to the Sioux City Career Academy, which offers numerous education pathways to help students prepare for postsecondary education and careers.

Aerial view of West High School. Photos: Mule-Hide Products Co. Inc.

“Our facilities need to keep up with the curriculum and new technologies so we can provide the best possible learning environments for our students,” says SCCSD Director of Operations and Maintenance Brian Fahrendholz, adding that the facilities plan emphasizes both supporting student achievement and maintaining fiscal responsibility.

Winkler Roofing Inc. of Sioux City has been one of the district’s key partners in this process for more than 20 years, installing new or partial roofing systems on nearly every building in the district. The summer of 2017 saw its crews re-roof portions of two high schools and one elementary school, installing 335 squares of new TPO roof systems and removing 170 tons of ballast.

A crew of between six and nine professionals was on a jobsite at any given time. The three projects were completed in less than a month, beginning in late June and wrapping up in late July. And there was nothing on the punch list following the warranty inspections.

A Systematic Approach

In recent years, SCCSD has adopted a systematic, long-range-planning approach to roof system management, working with local architects to evaluate its facilities, identify and plan work that needs to be completed the following summer, and map out future projects. The three roofs replaced in 2017 were indicative of this approach.

TPO Bonding Adhesive is applied on the substrate and the back of TPO membrane. Photos: Mule-Hide Products Co. Inc.

Each of the roofs was between 15 and 20 years old and had begun to show signs of age. Their manufacturers’ warranties had also expired in recent years, making their replacement next up on the district’s roofing project schedule.

“We typically replace roofing systems within five years of the warranty expiration,” Fahrendholz explains. “It enables us to stay ahead of the maintenance issues that can begin cropping up.”

All three existing roofs had ballasted EPDM roofing systems. The re-roofing projects continued the district’s move toward TPO systems and, where possible, eliminating ballast. The three new roofing systems have 20-year, no-dollar-limit labor and material warranties.

SCCSD has several reasons for moving away from ballasted systems, according to Winkler Roofing President Jeff Winkler, P.E. In addition to reducing the roof’s weight and eliminating the cost of the ballast, unballasted roofs have a neater appearance and it is easier to monitor the membrane’s condition and find and repair any leaks. And, of course, when the time for re-roofing comes, there are no truckloads of ballast to remove and replace.

According to Winkler, SCCSD likes the durability of TPO membranes. “They like that the membrane is reinforced and that the seams are heat-welded, rather than seamed with primer and tape,” Winkler notes.

East High School Project

Re-roofing a 5,356-square-foot section at East High School entailed a complete tear-off of the existing ballasted EPDM roofing system and insulation down to the steel roof deck. The Winkler Roofing team then installed a new system topped with Mule-Hide TPO with CLEAN Film from Mule-Hide Products Co. It was the first time Winkler Roofing had installed the prodcut.

At East High School, polyisocyanurate insulation is installed using 3-inch galvalume plates and drill point fasteners. Photos: Mule-Hide Products Co. Inc.

Three layers of polyisocyanurate insulation were mechanically fastened with screws and plates to enhance the building’s energy efficiency. The 60-mil TPO membrane was then fully adhered using TPO Bonding Adhesive from Mule-Hide Products.

The last step in any well-done TPO project is removing the dirt and scuffs that are inevitably left behind during installation, notes Winkler. That step is eliminated with this product; the crew simply removes the protective film covering the membrane to reveal a clean roof that is ready for inspection.

“The material is more expensive than regular TPO membranes, but there is the potential to make up for that in reduced labor costs,” Winkler notes.

The biggest benefit would be seen on roofs that have fewer penetrations, according to Winkler. Installing the membrane around penetrations requires removing a portion of the protective film, he explains. Because those areas are then exposed to scuffs and dirt, crews must go back and clean them by hand.

West High School Project

Meticulous detail work was key to the successful replacement of a 18,056-square-foot section of the roof at West High School. There were nearly four dozen penetrations in the roof, from 4-inch pipes to HVAC equipment measuring 8 feet by 12 feet. Many of the chimney stacks also were in spots that were awkward for the crew to work around.

Winkler Roofing crew members prepare to install a TPO walkway pad. Photos: Mule-Hide Products Co. Inc.

It was all in a day’s work for the Winkler Roofing team. “The quality of our detail work is one of the things we take pride in,” Winkler says. “The keys are good leadership, both on and off the roof, and a well-seasoned crew. My foreman, Absalon Quezada, is a master of solving the toughest of details and coordinating a well-orchestrated crew.”

The roof’s existing concrete deck made a mechanically attached system uneconomical, so a new ballasted system was specified. The existing ballast had deteriorated to the point that, if reused, it could puncture the new roofing membrane. So, all 100 tons of it, along with the existing EPDM membrane, were removed and disposed of. The pieces of stainless steel cap metal along the perimeter were removed and numbered in sequence for reinstallation later. Sections of water-damaged insulation were removed and replaced.

An additional layer of polyisocyanurate insulation was loose-layered over the entire roof to improve energy efficiency, followed by a new loose-layered 60-mil white TPO membrane. New ballast was then installed.

Details such as this pipe boot were installed using a hot-air welder. Photos: Mule-Hide Products Co. Inc.

The crew navigated a challenging site while depositing the new ballast on the roof of the one-story building. The site offered only one feasible parking spot for the seven dump trucks that would deliver the rock, and that was on a lawn, just on the other side of two large trees. Crews carefully noted the location of sprinklers for the in-ground irrigation system to avoid driving over them, and shut the system down for several days in advance of the delivery to minimize ruts caused by the trucks’ tires. The trees’ trunks were spaced less than 20 feet apart and the canopies have grown together, leaving only small tunnel to feed the conveyor through. Crews kept the conveyor low as they extended it through the branches, then brought it to roof height by repeatedly raising it and the backing the truck up.

Riverside Elementary School Project

At Riverside Elementary School, a 7,314-square-foot section of roof was replaced with a 60-mil, fully attached TPO system.

The existing EPDM membrane, ballast and edge metal flashings were removed and disposed of. Crews removed and replaced any water-damaged insulation, added an additional layer of polyisocyanurate insulation throughout to increase the building’s energy efficiency, and mechanically attached the insulation to the steel roof deck using screws and plates. The white TPO membrane was then installed using bonding adhesive, and new edge metal flashings were added.

Straight A’s on the Report Card

The new roofs received top grades on their inspection report cards.

At East High School, crews installed Mule-Hide TPO with CLEAN Film from Mule-Hide Products Co. The last step in the installation process is removing the protective film covering the membrane. Photos: Mule-Hide Products Co. Inc.

When Mule-Hide Products Co. Territory Manager Jake Rowell inspected the roofs, there were no items on his, or the district’s, punch list. The only remaining task — which was completed during the inspection — was covering the seams on the West High School roof with ballast; they had intentionally been left exposed for easy inspection. In fact, that was the only “to-do list” item Rowell noted during inspections of 11 Winkler Roofing projects that week.

“The quality of their work is phenomenal,” Rowell says. “The crews take pride in their work. They don’t just throw a project together and move on. They check their work to make sure it’s done right before I see it and before the customer sees it.”

THE TEAM

Roofing Contractor: Winkler Roofing Inc., Sioux City, Iowa
Architect: FEH DESIGN, Sioux City, Iowa, www.fehdesign.com
Roofing Materials Distributor: ABC Supply Co. Inc., www.abcsupply.com
Decorative Sheet Metal: Interstate Mechanical Corp., Sioux City, Iowa, www.interstatemechanicalcorp.com

MATERIALS

TPO Membrane Roof Systems: Mule-Hide Products Co. Inc., www.mulehide.com

Zinc Tiles Make Roof the Focal Point of Historic Residential Renovation

Originally built in 1853, this historic residence was recently renovated. The 1,870-square-foot cottage was designed to offer a highly contemporary flair while retaining many of its historic elements. Photos: RHEINZINK

Prior to its near-total reconstruction, the Jett Residence was an overgrown structure hidden in a grove of trees in Iowa City, Iowa. The strikingly renovated cottage now serves as a retreat house for its owners. Originally built in 1853, the residence retains a significant portion of the original, locally made red brick. An original, vaulted stone root cellar — rumored to have been part of the Underground Railroad — also remains on the property.

The owners were deeply involved in working with Neumann Monson Architects, Iowa City, in planning the renovation, according to co-owner Bobby Jett. The interior design of the 1,870-square-foot cottage offers a highly contemporary flair within the historic setting.

The most prominent feature of the exterior is the roof. “Everyone loves the roof,” Jett says. “They’ve never seen anything like it.” Approximately 2,500 square feet of RHEINZINK Square Tiles were utilized. The 0.8mm prePATINA blue-grey Square Tiles were installed in a diamond pattern.

The selection of the tiles was inspired by an old black and white photo of the house taken more half a century ago. “At that time, the roof of the house had diamond-shaped shingles. We wanted to replicate that look,” notes Jett. “The architect suggested that RHEINZINK could provide the look and durability we wanted.”

“We definitely wanted to replicate the roof’s visual pattern that we saw in the old photo but obviously wanted it to have more permanence and durability,” says Tim Schroeder, vice president at Neumann Monson Architects. “We’ve worked with zinc before and thought it would be a good complement to the dormers that would provide a nice crisp appearance. The RHEINZINK was definitely a nod to the historic element but provided a progressive look as well.”

Fabrication of the Square Tiles was done by RHEINZINK systems partner Sheet Metal Supply (SMS), headquartered in Mundelein, Illinois.

The restored roof is comprised of approximately 2,500 square feet of RHEINZINK Square Tiles, which were installed in a diamond pattern. Photos: RHEINZINK

Installation of the RHEINZINK Square Tiles was performed by Natural Metal Associates, Mont Vernon, New Hampshire. The owner of Natural Metal Associates, Lou Rondeau, has extensive hands-on experience with zinc fabrication methods and techniques. “I knew this was a unique project and I really wanted to be a part of it,” Rondeau notes. Rondeau was accompanied by an apprentice and personally did the hand-cutting and folding associated with detailing the valleys and edges. The work also included installation of the RHEINZINK half-round 5 ½-inch gutter system.

The installation was completed in nine days, according to Rondeau. “Zinc is a premium material that’s a real pleasure to work with,” he says.

TEAM

Architect: Neumann Monson Architects, Iowa City, Iowa, www.neumannmonson.com
Metal Fabricator: Sheet Metal Supply (SMS), Mundelein, Illinois, www.sheetmetalsupplyltd.com
Metal Roof Manufacturer: RHEINZINK, Woburn, Massachusetts, www.rheinzink.us
Roofing Contractor: Natural Metal Associates, Mont Vernon, New Hampshire, www.facebook.com/Natural-Metals-Associates-228362561021655/

Historic Fleur du Lac Estates Gets New Synthetic Shake Roof

Fleur du Lac Estates is now a private condominium development located on the shore of Lake Tahoe. The Yacht Club and Boat House were the first structures to be re-roofed with synthetic shake. DaVinci Roofscapes

A prime filming location for the 1974 movie “Godfather II,” historic Fleur du Lac Estates in California is now a private condominium development located on the beautiful west shore of Lake Tahoe. A Yacht Club and Boat House, 22 individual homeowner units and a variety of shared recreational facilities make the historic 1938 compound a much-sought-after retreat.

Years of harsh weather conditions had taken their toll on the real cedar shake roofs at Fleur du Lac Estates. Damage from repeated leaks, hail, ice dam issues, snow and other weather conditions recently convinced the board of directors it was time to invest in new roofs for the entire estate.

Homeowners at Fleur du Lac Estates looked for a product that would mimic the look of cedar, but bring them advantages to protect their homes and buildings from Mother Nature. After a comprehensive search, they determined that the Class A fire and Class 4 impact ratings of Bellaforté polymer shake tiles from DaVinci Roofscapes met their needs.

“We started with our two most valuable community structures, the Yacht Club and Boat House,” says Stewart Dalie, maintenance supervisor and project manager at Fleur du Lac Estates in Homewood, California. “Our plans are to re-roof all of the buildings in the Tahoe Blend over the next five to seven years. We did a tremendous amount of research to determine what roofing products would look realistic in this setting, meet the new codes required for roofs in our area, yet offer us superior qualities and a long lifespan.”

“Selecting the fire- and impact-resistant Bellaforté shake material from DaVinci Roofscapes means we won’t have to be concerned with the potential spread of flames should our area ever be touched by wildfires,” Dalie continues. “That’s a huge concern for our geographic area. However, not having to worry about wind-blown embers landing on a roof and then catching the building on fire is a tremendous relief.”

The Class A fire and Class 4 impact ratings of the Bellaforté tiles bring peace-of-mind to residents within the community. The durable roofing tiles have the appearance of natural hand-split cedar shake with slanted sawn edges and staggered lengths, but with the hassle-free qualities of a manufactured product. At a 1-inch average tile thickness, Bellaforté Shake roofing tiles remind many residents of jumbo cedar shakes prevalent in the Lake Tahoe area.

Safeguarding a Historic Setting

It’s not surprising that homeowners at the upscale Fleur du Lac Estates want to invest in the best possible roofing material. This is a mountain and lakeside homeowners association where every home has a deeded slip in the marina, resort-style services are the norm and aesthetics of the community are vigilantly upheld.

Owners chose the Bellaforté polymer shake tiles from DaVinci Roofscapes, which offered Class A fire and Class 4 impact ratings. Photos: DaVinci Roofscapes

Originally the summer home of famous industrialist Henry J. Kaiser, the 15-acre lakeshore site was constructed beginning in 1938. After Kaiser sold the estate, it went through a series of transitional uses from the 1960s to 1979, including serving as a private school and as the site for many on-location scenes for Francis Ford Coppola’s film, “The Godfather II.” Only in the 1980s did the current project begin to refurbish existing key structures and transform original homes on the property to individually-owned homes.

“Our community has always embraced the history of this setting while looking toward protecting its future,” says Lane Murray, general manager at Fleur du Lac Estates. “That’s one of the key reasons we wanted a roofing product that has the look of real cedar shakes, but with man-made advantages like resistance to fire, impact and high winds.”

Despite a variety of challenges with removing the old roofs and prepping for the new synthetic shake tiles, the team at Bruce Olson Construction has successfully tackled their first DaVinci Roofscapes installation project at Fleur du Lac Estates.

“The roofing surface for the Yacht Club and Boat House were in bad shape and very uneven,” says Taylor Greene, general manager of Bruce Olson Construction in Tahoe City, California. “We had to plane these into workable surfaces before getting started. Once we got started the product installed beautifully. We added flashing material to cover some valley locations which made the project look exceptional. To achieve the realistic look, gable end flashing that concealed the manufactured edge of the DaVinci product was added.”

The company, which does residential and multi-family new construction work in several states including Hawaii, has already started work on several additional roofs in the Fleur du Lac complex.

“The Bellaforté roofing looks amazing,” says Greene. “Best of all, these polymer shakes are perfect for this geographic area. Traditional wood shakes ‘hold’ the water from melting snow. Those saturated shakes weigh more and cause the freeze line to be a part of the shake. With the DaVinci product, the water is not absorbed into the tile, so snow melting is faster and more efficient. This can also help reduce the ice damming effect in many locations.”

Laughing at Mother Nature

Nestled amidst stunning mountain peaks and world-famous ski conditions, Fleur du Lac Estates can experience heavy snowfall during the winter months. The property is just five minutes from Homewood Mountain Ski Resort, and the area usually sees snow in excess of 180 inches total. That’s one reason why the community decided to have the Bruce Olson team incorporate snow fences and snow guards from Rocky Mountain Snow Guards into the structures.

Photos: DaVinci Roofscapes

“In our area, it’s very common to use snow guards and fences to help keep snow from falling on individuals and property,” says Greene. “The previous structures at Fleur du Lac Estates didn’t have any type of snow retention system. We believe having these products in place now — which were very simple to put in during the polymer shake installation — will make life much easier for property owners no matter how much snow Mother Nature delivers each season.”

Rocky Mountain Snow Guards custom designed the snow retention system for Fleur du Lac Estates incorporating both their Drift III+ snow fences and the company’s Rocky Guard RG10 snow guards. The system was developed to handle the 180 PSF snow load that can occur in this geographic location.

“The snow guards are attached in a pattern above the snow fence that creates friction to hold the snow slab in place while the snow fence provides a barrier beyond which the snow slab won’t slide,” says Lars Walberg, president of Rocky Mountain Snow Guards. “Using the combination of snow guards and snow fences gives this project a balanced snow retention system that has the look the owners desired.”

For homeowners, the new Bellaforté roofs on the Yacht Club and Boat House are tempting reminders of what will come on their own homes within the community in the years to come.

“Now that the Yacht Club and Boat House roofs are complete, we’re hearing very positive comments from our residents,” says Murray. “Folks are eager for the work to continue in the common areas so that their individual homes can soon get these terrific-looking new roofs.”

Metal Roof and Wall Panels Capture the Spirit of Shakespearean Theater

The Otto M. Budig Theater is the home of the Cincinnati Shakespeare Company. The new theater was designed by GBBN Architects in Cincinnati. Photos: Petersen Aluminum Corp

For many new arenas and theaters, the sheer size and scope of the project can pose the biggest hurdles. At the new Otto M. Budig Theater, home of the Cincinnati Shakespeare Company, the problem was the reverse. The intimate theater was shoehorned into an existing space up against an adjacent building, so logistics were tight. But that didn’t mean the roof system couldn’t be striking. Designed by GBBN Architects in Cincinnati, the building’s exterior features daring angles and multi-colored metal roof and wall panels that combine to help capture the spirit of the Shakespearean theater.

Matt Gennett, senior project manager and vice president of Tecta America Zero Company in Cincinnati, oversaw the roofing portion of the new construction project in the Over the Rhine section of Cincinnati on the corner of Elm Street and 12th Street. “This building was plugged in downtown, and they fit everything in real tight,” he says.

Approximately 5,400 square feet of PAC-CLAD 7/8-inch, 24-gauge Corrugated Panels from Petersen Aluminum Corp. were installed on the metal roofs and walls. Tecta America Zero Company installed the metal roof systems, as well as a TPO roof manufactured by Carlisle SynTec over the main structure and mechanical well. Work began in January of 2017 and the roofing portion of the project was wrapped up in late August.

The Metal Roof System

The building features two different metal roof systems. The roof on the Elm Street side is comprised of three intersecting triangle-shaped sections in two colors, Champagne Metallic and Custom Metallic Bronze. “There were several unique angles on the roof,” Gennett explains. “On the top, there was a second metal roof, a shed roof that went down to the 12th Street side.”

The theater’s roof and walls feature approximately 5,400 square feet of PAC-CLAD 7/8-inch Corrugated Panels from Petersen Aluminum Corp. in two colors. The wall panels are perforated. Photos: Petersen Aluminum Corp.

The metal roof systems were installed over a 2-inch layer of polyisocyanurate insulation and a 2-1/2-inch nail base from Hunter Panels, H-Shield NB. The nail base is a composite panel with a closed-cell polyisocyanurate foam core, a fiber-reinforced facer on one side and, in this case, 7⁄16-inch oriented strand board (OSB) on the other. The nail base was topped with Carlisle WIP 300 HT waterproofing underlayment to dry in the roof.

Crews also installed two rows of snow guards on the metal roof using the S-5! CorruBracket. “The snow guard was a little different,” Gennett says. “It was specifically designed for a corrugated roof.”

The TPO Roof System

The main roof and mechanical well were covered with the TPO roof system, which totaled approximately 8,300 square feet. After Carlisle VapAir Seal725 TR self-adhering air and vapor barrier was applied to the metal deck, crews installed two layers of 2-inch iso. Tapered insulation was applied over the top to ensure proper drainage. The insulation was covered with a 1/2-inch sheetrock and the 60-mil TPO was fully adhered.

Two large smoke hatches manufactured by Bilco were installed over the stage area. The ACDSH smoke hatches measured 66 inches by 144 inches, and are designed for theaters, concert halls and other interior applications that require limiting noise intrusion.

The Installation

The initial focus was to get the roof dried in so work could progress inside the building. The jobsite conditions posed a few challenges. The structure abutted an existing building, and the space was tight. The schedule necessitated multiple trips to the site, which can be a budget-buster on a small project. “We had a lot of trips in and out to accommodate the schedule and get everything dried in so they could meet the interior schedule,” notes Gennett. “We were sort of on call. We made three or four trips out to roof this small project, so it took a lot of coordination because it was completed in pieces.”

Crews tackled the TPO roof sections first. The mechanical well section provided several challenges. Changes in the mechanical well layout necessitated moving some curbs and making adjustments to the tapered insulation. “They were trying to get lot of equipment into a small space,” Gennett explains. “We had to make sure we could get the water to the low spots and route it around all of that equipment. That was probably the biggest challenge on the project.”

Staging material was also problematic, as traffic was heavy and parking space was at a premium. Material was loaded by a crane, which had to be set up in the street. “It’s a postage stamp of a site,” says Gennett. “This is a main thoroughfare, and there is a school right across the street. We had to work around school hours, and we couldn’t be working when the busses were coming in. We usually came in after school started, around 8 a.m., to load materials.”

When it came time to load the metal panels, the cramped jobsite actually paid off. “It was very convenient,” Gennett recalls. “We were able to load the panels onto the adjacent roof and just hand them over. We had a nice staging area for cutting, so all in all it wasn’t bad.”

The corrugated panels were installed with matching edge metal. “It’s not a complicated panel to install, and they look really nice,” Gennett notes. “On the Elm Street side, to the right of the valley was one color, and to the left was another, so we had to match the color with our coping. There were some interesting transitions with our metal. We also had to really pay attention to how the siding was being installed so we could match the metal to the siding and follow the transitions from color to color.”

The perforated wall panels were installed by ProCLAD Inc. of Noblesville, Indiana. “Once the walls were done, we came in and did the transition metal,” Gennett says. “We just had to make sure everything lined up perfectly.”

Planning Ahead

Ensuring a safe jobsite was the top priority for Tecta America Zero and Messer Construction, the general contractor on the project. “Both Messer Construction and Tecta America take safety very seriously. That’s why we’re good partners,” Gennett says. “We had PPE, high-visibility clothing, hard hats, safety glasses for the whole project. All of the guys were required to have their OSHA 10. Anyone outside of the safety barriers had to be tied off 100 percent of the time.”

Planning ahead was the key to establishing the safety plan and meeting the schedule while ensuring a top-quality installation. “This job had a lot of in and out, which is tough in the roofing business,” Gennett says. “But we planned ahead, we made sure everything was ready for us when we mobilized, and we did a good job of coordinating with the other trades. It took a lot of meetings and discussions — just good project management.”

Gennett credits the successful installation to a great team effort between everyone involved, including the general contractor, the subcontractors, and the manufacturers. “We pride ourselves on our great, skilled crews and our great field project management,” he says. “Our superintendents are there every day checking the work and making sure the guys have everything they need. Messer Construction is great to work with, and obviously having the manufacturer involved the project and doing their inspections as well helps ensure the quality meets everyone’s standards and holds the warranty.”

The theater is now another exciting venue in the Over the Rhine neighborhood. “It is really cool spot,” Gennett says. “It’s an up-and-coming neighborhood that’s grown in leaps and bounds in the last seven years. There is a ton going on in Cincinnati. It’s just another part of the city that makes it really fun to go downtown.”

TEAM

Architect: GBBN Architects, Cincinnati, Ohio, www.gbbn.com
General Contractor: Messer Construction, Cincinnati, Ohio, www.messer.com
Roofing Contractor: Tecta America Zero Company, Cincinnati, Ohio, www.tectaamerica.com
Wall Panel Installer: ProCLAD Inc., Noblesville, Indiana, www.procladinc.com

MATERIALS

Metal Roof:
Roof Panels: PAC-CLAD 7/8-inch Corrugated Panels, Petersen Aluminum Corp., www.pac-clad.com
Wall Panels: PAC-CLAD 7/8-inch Corrugated Panels, Petersen Aluminum Corp.
Nail Base: H-Shield NB, Hunter Panels, www.HunterPanels.com
Snow Guards: CorruBracket, S-5!, www.S-5.com
Waterproofing Underlayment: Carlisle WIP 300 HT, Carlisle SynTec, www.CarlisleSyntec.com

TPO Roof:
Membrane: 60-mil grey TPO, Carlisle SynTec
Waterproofing Underlayment: Carlisle WIP 300 HT, Carlisle SynTec
Smoke Hatches: ACDSH Acoustical Smoke Hatch, The Bilco Co., www.Bilco.com

Expert Crew Is Called in for Copper Roof Restoration Project

The dome on the Bradford County Courthouse was restored with copper panels during the first phase of a $3 million renovation project. Photos: Charles F. Evans Roofing Company Inc.

The octagonal dome atop the Bradford County Courthouse has been a fixture on the Towanda, Pennsylvania, skyline for more than 120 years. It now shines brightly after being restored with copper panels as part of a $3 million renovation project.

Built in the Classical and Renaissance revival styles in 1898, the four-story courthouse was placed on the National Registry of Historic Places in 1987. The dome’s original roof tiles were recently replaced as part of the project, which also included the complete restoration of the structure’s main roof.

The Charles F. Evans Company Inc., the union division of Evans Roofing Company Inc., headquartered in Elmira, New York, has a long history of successfully tackling projects with historical significance. C&D Waterproofing Corp., the general contractor on the project, reached out to the firm for support assessing the roofing portion of the project. The two companies teamed up on the project, with C&D Waterproofing handling the masonry restoration work and Charles F. Evans Company installing the roof systems.

The roofing work consisted of two phases. Phase One, which began in April of 2016, involved replacing the deteriorated terracotta tiles on the dome with soldered flat seam copper panels. Phase Two, which began in April of 2017, involved installing batten seam copper roofing on main structure and new copper flashings, gutters and downspouts.

Safety First

Construction Manager Bill Burge of Charles F. Evans Company was thrilled to be part of this historic project. Before

Originally completed in 1898, the courthouse was placed on the National Registry of Historic Places in 1987. The building’s main roof was removed and replaced with a copper batten seam roof after work on the dome was completed. Photos: Charles F. Evans Roofing Company Inc.

concentrating on the installation details, he knew the company would focus on the top priority. “Safety is number one,” says Burge. “Safety comes before profits. Safety comes before everything. We always want to make sure we have the right safety plan going into the job, and throughout the job, we are maintaining that plan and working that plan. We want our guys to go home to their families at the end of the day, so that’s key for us.”

Burge worked as a union carpenter for 10 years before joining the company more than seven years ago. He found he had an affinity for sheet metal work. “The craftsmanship and quality goes hand in hand with carpentry,” Burge says. “Everything starts with the carpentry. You have to have your base perfect; otherwise, everything from there on out doesn’t work. Sheet metal is a finished product, typically, especially in our business, so things have to be done right. Things have to be done to the highest standard of quality, because that’s what people see.”

The dome was designed to be a showpiece, and Field Superintendent Brian Babcock and his crew of qualified union sheet metal mechanics knew they would be held to an exacting standard. “The key to this project and every project is our talented mechanics in the field,” Burge says. “Charles F. Evans Company is nothing without this talent—they deserve all of the credit.”

Around the Dome

Phase One began with the removal of the tiles on the dome. “The ceramic tile was laid over open steel purlins,” Burge notes.

Charles F. Evans Roofing Company handled the roofing portion of the project, while C&D Waterproofing Corp. served as the general contractor and performed masonry restoration work. Photos: Charles F. Evans Roofing Company Inc.

“There was open framing with quarter-inch steel angle for the purlins, and each piece if tile was wired on. The removal process was fairly simple. You could actually lift up the bottom of the tile and snap it off.”

The removal work had to be done in sections and dried in every night. “One of the hardest things about this process was we had to install two layers of half-inch plywood over the steel purlins and anchor those down,” says Burge.

The plywood was attached to vertical two-by-fours, which were screwed into the purlins. The plywood was covered with one layer of Warrior 30-pound felt paper, Meadows Red Rosin Paper, and Grace Ultra High Temp underlayment in gutter areas.

The built-in gutter at the base of the dome was torn out and re-framed. The new gutter was wider and deeper according to the recommendation of Levine & Company Inc., the architect on the project. “We did everything to specification as Levine & Company drew it,” says Burge.

Once the cladding was completed on the gutter, the copper panels of the dome were installed. The 20-inch panels were made of 20-ounce, cold rolled copper, supplied by Revere Copper Products. Both the panels and cladding were fabricated in Charles F. Evans Company’s fabrication shop. The copper panels clip to each other and have a hem on four sides that clips

Custom flashing pieces were fabricated and installed where the copper roof panels met the base of the dome. Photos: Charles F. Evans Roofing Company Inc.

to the adjacent panel fastened to the deck. At the top of each panel, a hook clips off to the plywood, and the hook is covered by the panel directly above it.

Burge points out that the octagonal structure of the dome helped speed up the installation of the copper panels. “There are eight hips on the dome,” he notes. “Every section of the dome is like a piece of pie, basically, so we were able to start the panels in various locations. We didn’t have to start at one end and go around the dome. We could move around.”

Repairing the statue on the top of the dome was also part of the scope of work. “We soldered copper patches on any damage the statue had,” Burge says. “C&D Waterproofing completely cleaned and buffed the statue and applied a copper coating.”

Across the Roof

After the work on the dome was completed, work began on the main roof. The existing roof was removed down to the existing steel deck. The lower roof also had a built-in, copper-clad gutter that had to be removed and reconstructed. After

Scaffolding systems were constructed for both phases of the project. Shown here is part of the system installed around the lower roof, which featured planks and guardrails at the eave and rake edges. Photos: Charles F. Evans Roofing Company Inc.

the gutter was completed, work on the main roof began. “After we completely cleaned the metal decking, we had to install a layer of Grace Ultra High Temp underlayment,” Burge recalls. “We then installed two-by-four wood sleepers, 2 feet on center.”

Crews installed 1.5 inches of polyiso insulation between the two-by-fours, followed by another 1.5-inch layer of polyiso. Pieces of 5/8-inch plywood were then screwed down to the sleepers. The plywood received 30-pound felt, and the battens were installed 20 inches on center. The seams were completed using a custom-designed mechanical seamer manufactured by Roll Former Corp.

Installation of the 12,000 square feet of copper panels went smoothly, but where panels met the dome, details were tricky. “Everything is pitched, and the dome has eight different sections sitting right in the center of the structure,” Burge explains. “A lot of time and energy went into fabricating and installing custom flashing pieces at the base of the dome.”

The Safety Plan

A scaffolding system was the key to the safety plan for both phases of the project. “For Phase One, we had to remove a portion of the roofing system and put down some plywood on top of the existing roofing in order to build a scaffold to access the dome,” Burge says.

This photo shows the main roof before restoration work began. Photos: Charles F. Evans Roofing Company Inc.

Scaffolding was constructed to the eave edge of the copper dome, allowing the gutter to be removed. Ladders were used to access the dome and personal fall arrest systems were attached into HitchClips from Safety Anchor Fall Equipment, LLC, which served as individual anchor points. “We continued that process as we went up, using ladder jacks,” says Burge. “We continued with that plan, and never deviated.”

After Phase One was completed, the scaffolding was removed, and another scaffolding system was installed around the entire lower roof. Phase Two required planks and pre-engineered guardrails at the eave and rake edges. “Part of process of installing this roof included installing new safety anchors at various locations, and as we finished up, we were able to use those anchors as tie-off points,” Burge points out.

Phase Two is scheduled for completion in early November, and Burge has high praise for everyone involved with the project. “Levine & Co. Inc. is the architecture firm on the project,” he says. “We didn’t deter from any details developed. They drove this thing. We have worked with them on a great many projects in the past, and we have a great comfort level with them.”

Copper panels, cladding and details were fabricated in Charles F. Evans Company’s metal shop. Photos: Charles F. Evans Roofing Company Inc.

The masonry and roofing work had to be well coordinated. “C&D Masonry & Waterproofing progressed ahead of us with items that we needed to be done, and then came back behind us to mortar all of the counter flashings back into the dome,” Burge says. “They were right there with us every step of the way.”

Finding the right combination of workers for this project was crucial, according to Burge. “We had one of our best crews on this project for a reason,” he says. “This project was led by Brian Babcock of Sheet Metal Local 112, and he was essential in putting this whole thing together. He’s been with Charles F. Evans Company for 20 years, and his leadership and focus is the reason this project is going to be successful.”

Ornate sheet metal work is rare these days, but the art is not lost at Charles F. Evans Company. “We’ve been doing this work for 60-plus years,” Burge says. “This knowledge and this workmanship has been handed down generation after generation. We wouldn’t have taken on this project if we didn’t have the confidence in our employees that we do.”

Historic restoration projects are becoming an increasingly bigger chunk of the company’s portfolio, notes Burge. “We do a lot of work with older universities and businesses that have these types of buildings,” he says. “A lot of buildings need this type of work, and it’s a trade not everyone else has. This is a craft that takes years to master. We harness that, we build from within, and we bring in young guys and teach them how to do it the right way. We have a great mix of people ages 23 up to 60, and it’s learned, it’s taught, and it’s preached.”

Burge is hopeful the new roof will last at least as long as its predecessor. “This is the one thing that makes Charles F. Evans Company special to me: the fact that what we do from an architectural sheet metal standpoint, from a slate, copper, tile roof standpoint—these roofs will last 100, 150 years, and it is artwork,” he says. “The fact that you’re a part of something that’s been around since the turn of the last century—to me it doesn’t get any better than that.”

TEAM

Architect: Levine & Company Inc., Ardmore, Pennsylvania, Levineco.net
Construction Manager: C&D Waterproofing Corp., Bloomsburg, Pennsylvania, CDwaterproofingcorp.com
Roofing Contractor: Charles F. Evans Roofing Co. Inc., Elmira, New York, Evans-roofing.com

MATERIALS

Copper Supplier: Revere Copper Products, Reverecopper.com
Synthetic Underlayment: Grace Ultra High Temp, GCP Applied Technologies, GCPat.com
Mechanical Seamer: Roll Former Corp., Rollformercorp.com
Anchor Points: HitchClip, Safety Anchor Fall Equipment, LLC, Hitchclip.com

Restoring the Saskatchewan Legislative Dome Is a Labor of Love

The Saskatchewan Legislative Building in Regina was originally completed in 1912. The structure had undergone deterioration due to poor drainage around the dome, and a restoration project was initiated to repair the masonry and restore the copper dome. Photos: Ministry of Central Services, Government of Saskatchewan

“At the end of the day, why do we go to cities?” asks Philip Hoad. “We go to cities to look at their beautiful old buildings. We don’t generally go to look at their skyscrapers. It’s the old building that gets our minds and hearts working. When you go to a city and look at these old buildings intermingled with new buildings—that’s what gives a city life.”

Hoad is with Empire Restoration Inc., headquartered in Scarborough, Ontario, Canada. He’s been restoring historic buildings for some 30 years, and when he found out about the project to renovate the dome on the Saskatchewan Legislative Building, he knew it was a once-in-a-lifetime opportunity. “The architect put out a pre-qualification across Canada, and four firms were successful. We were one of them,” he remembers. “Then we ended up securing the tender bid. I’ll never forget it because I did the tender estimate just after a hernia operation in my dressing gown. It was really a project I won’t forget.”

The building was originally constructed in Regina, Saskatchewan, between 1908 and 1912, and it serves as the seat of government for the province and houses the legislative assembly. Designed by architects Edward and William Sutherland Maxwell of Montreal in a mix of English Renaissance and French Beaux-Arts styles, the building features ornate stone elements and unique decorative copper finishes that accent its iconic copper-clad dome. It is designated as a National Historic Site of Canada and a Provincial Heritage Property, and is subject to strict regulations regarding materials and methods of repair.

Work on the dome was carried out in a fully enclosed and heated temporary structure that allowed crews to continue throughout the winter months. Photos: Ministry of Central Services, Government of Saskatchewan

The structure has undergone some restoration work over the past 100 years, but in 2013, planning began for a conservation project designed to repair and restore the tower. The reasons for the project were twofold, according to Hoad. “First of all, the copper panels were blowing off, and somebody had re-secured them with face screws back in the ’60s or ’70s. But more importantly, the water was coming off the dome and damaging the stone below it. The dome was originally never designed with gutters, and then they later put gutters on, and these failed. So those were the two things that drove the project in the first place.”

Hoad knew the project would be challenging, but it he was confident that his company had the experience and passion to handle it. “These projects come along, for most of us, once in a lifetime,” he notes. “It’s the scale and the detail and the level of commitment that you need to restore an old building that sets us apart from, say, new construction. It’s not cookie-cutter. Everything is different, and you never know what you’re getting into—although with our experience, we’ve done so many old buildings we sort of know what we’re going to run into. All of the people who work for us love to work on these old buildings. It’s very satisfying at the end of it.”

The goals of the project were perfectly aligned with Hoad’s business philosophy. “When I start with an old building, I don’t want to change it,” he says. “It might look a little newer, but I want it to be the same as when we found it. I don’t want it to stand out as a brand-new building. We just want it to last another 100 years and to know that we’ve helped preserve it for future generations.”

The ornamental copper elements were restored and reset over the new copper panels. Photos: Ministry of Central Services, Government of Saskatchewan

Repairing the Substructure

Work on the dome was more complicated than initially thought. During the pre-construction condition survey and assessment, additional problems were discovered by the conservation architect, Spencer R. Higgins of Toronto. “Once the architect had done all his work and surveyed the building, they also realized the original woodwork was not quite up to snuff,” Hoad explains. “Basically, much of the original wood framing was made up of old pallets. It was quite remarkable. So structurally, we had to re-frame the hips, which we call the ribs. We completely removed the old pallet framing and re-framed it. We also tried to straighten the slight twist in dome, but it wasn’t easy to do since it was a poured concrete structure underneath.”

New ribs were constructed out of Douglas fir plywood using a CNC machine from 3-D architectural drawings to create templates. It was also necessary to remove and replace approximately 40 percent of deteriorated wood deck on the concrete dome, with both the interior and exterior surfaces of the concrete being repaired by the general contractor on the project, PCL Construction Management of Regina. “Re-framing the ribs was quite a challenge,” notes Hoad. “Once the concrete deck was repaired, we screwed new Douglas fir roof boards into the repaired concrete dome, added an air vapor barrier, Roxul insulation, wood nailers and an additional layer of Douglas fir roof boards, with housewrap and asphalt saturated roofing felt as the underlayment system for all the new copper roofing and cladding that would follow.”

Internally drained stainless-steel gutters were installed at the base of the dome. The gutters were lined with sheet lead. Photos: Ministry of Central Services, Government of Saskatchewan

After the masonry restoration was completed by RJW-Gem Campbell Stonemasons of Ottawa, Empire Restoration installed new gutters at the base of the dome. According to the architect’s design, heavy stainless-steel plate gutters were formed and then lined with sheet lead. Projecting stone cornice ledges were also covered in sheet lead.

Restoring the Copper Dome

The existing 16-ounce copper panels were all removed, and they were replaced with new 20-ounce panels recreated to match the original sizes and profiles. More than 20,000 square feet of copper panels were custom fabricated and installed. Great care was taken to carefully remove and restore decorative elements, including the copper garlands.

Decorative elements that could be saved were installed on new brass armatures. The dome is topped by a cupola and lantern, which were carefully restored. “The mantel on the very top, we didn’t strip that off,” Hoad notes. “We just replaced and repaired selective components, so that’s why you have a mix of old and new.”

Logistics at the job site were well coordinated. “Access was quite remarkable because PCL had erected a steel frame onto which we erected scaffolding, so the dome was right there in front of us,” Hoad notes.

Cornice sections were restored, and extensive sheet lead flashings were installed over stone cornices and ledges. Photos: Ministry of Central Services, Government of Saskatchewan

When working on the dome itself, crew members had to be tied off with personal fall arrest systems, as it was possible to slip through gaps between the scaffold decks and the dome roof surface. Weather was not an issue, as the steel frame structure was totally enclosed with a heavy-duty insulated tarp system. “We had our own ventilation system, we had a heating system, we had electricity up there, we had pneumatic power—we basically had everything up there. PCL had it well set up for the various trades. There was a large crane on site to hoist all our materials up.”

Hoad cites the sheer size of the project as one of his greatest concerns. “The biggest challenge was just the scale of the project, being able to produce the amount of work necessary and get the job done in the prescribed time,” he says. “It was a lot of the same thing, albeit with some very complicated detailing. We had multiple skill sets on the site dealing with multiple materials and details.”

The project has won numerous awards, including a 2017 North American Copper in Architecture Award from the Copper Development Association. Hoad is proud of his company’s role in the project but relieved it is completed. “During it, I was at times tearing my hair out,” he recalls. “It was a very high-pressure project that lasted a long time. It was three or four days a week of constant men, materials, equipment, meetings, details, changes, extras, credits. From start to finish, it was two years of my life.”

The cupola and lantern at the top of the dome were repaired in situ. Photos: Ministry of Central Services, Government of Saskatchewan

Despite the pressure, Hoad found the work extremely satisfying. “What we are doing is permanent and built to last for future generations,” he says. “We’re using natural, traditional building materials of stone, wood, copper and other noble metals. That’s what drives me to love the industry and my job—because it’s permanent, sustainable and it’s for future generations.”

After all, it’s often the roof and flashings that play one of the most critical roles in fighting the elements of weather, notes Hoad. “Roofing and sheet metal deficiencies is where much of building damage and deterioration starts,” he says. “You can repair a masonry wall, but if you don’t stop it getting saturated, it’ll just deteriorate again in another few years. Regina was a good example of that. We’ve now provided great protection to these beautiful stone elements, allowing them to last another 100 years.”

TEAM

Conservation Architect: Spencer R. Higgins, Architect Incorporated, Toronto, Ontario, Higginsarchitect.com
General Contractor: PCL Construction Management, Regina, Saskatchewan, PCL.com
Sheet Metal Contractor: Empire Restoration Inc., Scarborough, Ontario, EmpireRestoration.com
Masonry Contractor: RJW-Gem Campbell Stonemasons Inc., Ottawa, Ontario, RJWgem.com

MATERIALS

Copper: 20-ounce copper sheet metal
Wood Framing: Douglas fir
Insulation: Rockwool Rigid Insulation, Roxul, Roxul.com

Striking Asphalt Shingle Roof Tops the Restored Music Hall in Cincinnati

Originally designed by Samuel Hannaford in the 19th Century, the Music Hall first opened its doors in 1878. The Music Hall Revitalization Company coordinated the restoration of the 139-year old Cincinnati landmark, which just reopened to the public Oct. 6, 2017.
Photos: CertainTeed

The Cincinnati Music Hall is considered one of the largest and most beautiful concert halls and theaters in the world. It has played host to iconic performances and events for more than a century, from the 1880 Democratic National Convention to performances that helped shape the American arts scene.

A vision and product of 19th century architect Samuel Hannaford, Music Hall—as it’s known across the Queen City—first opened its doors to the public in 1878. Yet the doors on the 225,000-square-foot facility have been closed since May 2016 to allow for a complex interior and exterior restoration effort that would propel the aging building into the modern era while also preserving its beautifully unique characteristics.

The Charge

Restoring the beauty of Hannaford’s showpiece was more than a simple facelift. According to the Music Hall Revitalization Company, the nonprofit coordinating and leading the renovation, engineers investigating the building discovered structural deterioration beyond what one would expect in a 139-year old building, and recommended actions secure the Music Hall’s long-term viability.

The $135 million Music Hall renovation began in the spring of 2016, with the Cincinnati Center City Development Corporation (3CDC) overseeing construction. Following a rigorous request for proposals, 3CDC chose Imbus Roofing to install the new roof.

The Music Hall has been traditionally adorned with high-end shingles, and Grand Manor luxury asphalt shingles from CertainTeed were chosen to replicate the slate aesthetic and stand up to the elements. Photos: CertainTeed

Principal Daniel Imbus and his team were more than up to the task. Not only had Imbus Roofing performed the bulk of the roofing work at Music Hall over the past few decades, they have a rich legacy in the greater Cincinnati area. Among the other high-profile projects with connections to Imbus roofing are the Proctor & Gamble Twin Towers, the Walnut Hills Copper Dome, Paul Brown Stadium and the original Riverfront Stadium.

The team at Imbus worked closely with 3CDC, PWWG Architects and local distributor Midwest Roofing Supply to nail the aesthetic and capture the original essence of Music Hall.

“The roof replacement was a big part of the project, not only for protecting all the interiors that were being restored or replaced, but for the overall look of the building,” Imbus explains. “With the older building and the amount of other work being performed, just getting around the building and scheduling work around other trades such as painting, masonry, HVAC, etc., required a lot of planning.”

The Installation

Imbus partnered with Seth Dorn, branch manager at Midwest Roofing Supply, to find the appropriate materials to for the front towers, Corbett Tower, and Opera House portions of the roof. According to Dorn, the Music Hall has been traditionally adorned with high-end shingles, so they chose Grand Manor luxury asphalt shingles from CertainTeed to replicate the slate aesthetic and endure the wind, rain, snow and other elements typical to Cincinnati. To recreate the distinctive striped pattern of the roof, crews installed approximately 600 squares of Grand Manor shingles in two colors, Stonegate Gray and Brownstone.

The roof’s distinctive striped pattern was recreated with 600 squares of Grand Manor shingles in two colors, Stonegate Gray and Brownstone. Photos: CertainTeed

“We serviced Imbus Roofing with all potential materials for the project,” Dorn notes. “In addition to the shingles, we supplied DiamondDeck and WinterGuard underlayments from CertainTeed to further enforce weather protection.”

A large part of the roof replacement was the Main Hall, which sits above lower sections of the building and has a steep slope. To perform this installation, the Imbus Roofing team had to build scaffolding along the full gutter lines to provide safe and secure roof access and work platforms.

“With the steep slope of the roof, the shingles are an integral part of the exterior look of this historic building,” says Imbus. “It’s an introduction to the amazing interior renovation and exterior restoration.”

The Reopening

The project, more than seven years in the making, was completed on Oct. 1, 2017. The doors officially re-opened on Oct. 6 to kick off a weekend of events that included an opening night gala, a community Open House, and a pair of concerts featuring the Cincinnati Symphony Orchestra.

“It looks awesome,” reflects Dorn. “We will spotlight this job for all of our contractors and customers.”

“We had a great experience with this project,” Imbus adds. “It was a quick schedule with a lot of work to a signature building of Cincinnati. It is great being a part of a successful project that I think will impress everyone in the community.”

TEAM

Developer: Cincinnati Center City Development Corporation (3CDC), Cincinnati, 3CDC.org
Architect: PWWG Architects, Pittsburgh, PWWGgarch.com
Project Coordinator: Music Hall Revitalization Company, Cincinnati, Musichallcincinnati.org
Construction Manager: Messer Construction, Cincinnati, Messer.com
Roofing Contractor: Imbus Roofing, Wilder, Kentucky, Imbusroofing.com
Local Distributor: Midwest Roofing Supply, Cincinnati, Midwestroofingsupply.com

MATERIALS

Steep-Slope Roof System: Grand Manor luxury asphalt shingles, CertainTeed, CertainTeed.com
Underlayments: DiamondDeck and WinterGuard, CertainTeed