Building to Last With Asphalt-Based Roofing

The property owner of this building opted for a BUR/modified-bitumen hybrid system with reflective white coating. Photos: Johns Manville

The property owner of this building opted for a BUR/modified-bitumen hybrid system with reflective white coating. Photos: Johns Manville

The advantages of a built-up roofing (BUR), modified bitumen, or hybrid roofing assembly include long life, a variety of maintenance options, and outstanding puncture resistance. This durability means property owners will spend less time worrying about fixing leaking roofs and the associated hassles — lost productivity, disruption in operations, slips and falls, repair bills, and other liabilities.

Recommending clients install a roof system that gives them the best chance of eliminating unproductive distractions is a good business decision for design/construction professionals. A more durable roof will enable property owners to focus on making profits instead of dealing with the aftermath of a roof leak.

“I have no problem endorsing asphalt-based roofing,” says Luther Mock, RRC, FRCI and founder of building envelope consultants Foursquare Solutions Inc. “The redundancy created by multiple plies of roofing is really what sets systems like BUR and modified bitumen apart.”

One can argue BUR’s closest cousin — the modified bitumen (mod bit) assembly — is actually a built-up roof made on a manufacturing line. The reality is the plies of a BUR create a redundancy that can help mitigate any potential oversights in rooftop workmanship.

BUR systems are offered in a variety of attractive and reflective options with a proven track record of performance. Photos: Johns Manville

“I’ve replaced BURs for clients I worked with 30 years ago,” says Mock. “We recently replaced [a BUR] specified in the early 1980s. And the only reason was because some of the tectum deck panels had fallen out of the assembly. Meanwhile, the roof was still performing well after 30 years.”

According to the Quality Commercial Asphalt Roofing Council of the Asphalt Roofing Manufacturers Association (ARMA), one of the main drivers of the demand for BUR systems is the desire of building owners for long life cycles for their roofs.

“A solid core of building owners and roofing professionals in North America continue to advocate asphalt-based roofing systems because of their long lives,” says Reed Hitchcock, ARMA’s executive director.

Benefits of Asphalt-Based Roofing

Over the years, asphalt-based roofing assemblies have earned a reputation for reliability with building owners, roofing consultants, architects, engineers, and commercial roofing contractors. The original price tag tends to be greater than other low-slope roofing options, but these assemblies offer competitive life-cycle costs. BUR enjoys a track record spanning more than 150 years; it provides a thick, durable roof covering and can be used in a broad range of building waterproofing applications.

An aerial view of a reflective roof membrane. Photos: Johns Manville

Available as part of fire-, wind-, and/or hail-rated systems, BUR and modified bitumen assemblies offer proven waterproofing capabilities, high tensile strength, long-term warranties, and a wide choice of top surfacings (including ‘cool’ options). Their components include the deck, vapor retarder, insulation, membrane, flashings, and surfacing material. The roofing membrane can be made up of a variety of components, including up to four high-strength roofing felts, modified bitumen membranes (hybrid systems) and standard or modified asphalt. Hot-applied asphalt typically serves as the waterproofing agent and adhesive for the system.

The roofing membrane is protected from the elements by a surfacing layer — either a cap sheet, gravel embedded in bitumen, or a coating material. Surfacings can also enhance the roofing system’s fire performance and reflectivity ratings.

Another surfacing option is gravel, commonly used in Canadian applications where the existing roof structure can handle the extra weight. There are also several smooth-surface coating options, the most popular of which are aluminum or clay emulsion products offering greater reflectivity than a smooth, black, non-gravel-surfaced roof. These reflective roof coating options are typically used in warmer regions when required by code. Reflective white roof coatings are also becoming more popular.

Cold-Process BUR

Cold application of BUR has provided an alternative to traditional hot-applied systems for more than 48 years. The term ‘cold-applied’ means the BUR roofing system is assembled using multiple plies of reinforcement applied with a liquid adhesive instead of hot asphalt. These cold adhesives are used between reinforced base/ply sheets to provide a weatherproof membrane.

The owner of this shopping mall chose BUR primarily due to its redundancy. Multiple plies of roofing can provide extra insurance against water intrusion. Photos: Johns Manville

In BUR cold-process roof systems, manufacturers typically require that only fully coated, non-porous felts (such as standard base sheets) are used as base and ply sheets. Generally, an aggregate surfacing or a coating is then applied over the completed membrane to provide surface protection and a fire rating for the roof system.

“In the re-roofing market, we’re definitely seeing more cold-applied systems being specified, particularly with modified bitumen,” says Mock. “It’s a natural alternative when a building may be occupied during the reroofing process and hot asphalt is not an option.”

Adhesives can be manually applied with a squeegee, brush, or spray application equipment. When numerous roof penetrations or rooftop access become issues, manual application of adhesives is usually the best option. Proper coverage rates are vital to a successful, long-term, cold-applied roof system. Both spray and manual application methods require the proper amount of adhesive material be installed. If too little adhesive is applied, there is a potential for an improper bond to be formed between the felts. If too much is applied, then the potential for longer setup times and membrane slippage is increased. Additionally, ambient temperatures must be 40 degrees Fahrenheit (5°C) and rising before installation. This limits, but does not preclude, use of cold-process BUR in much of the northern United States and Canada.

“I’m also comfortable specifying BUR, because I’m confident I will have a seasoned contractor on the job,” says Mock. “The commitment in terms of skilled labor and equipment is simply too great for these contractors to be first-timers.”

Flashings are another critical component of every roofing system, particularly in cold-weather applications. Four-ply BURs use modified bitumen flashings almost exclusively. These membranes are predominantly styrene butadiene styrene (SBS)-modified and offer greater elongation in frigid climates where it counts most — at the interface of the roof system with other building components.

Use of a modified-bitumen base ply is one way of handling general flashing requirements, although modified bitumen cap sheets are more common.

BUR Repair and Maintenance

Like all roof systems to some extent, the life expectancy of a BUR system depends on the property owner’s commitment to routine maintenance. All roof systems can benefit from an owner willing to undertake a proactive management plan. BUR installed over an insulation package lends itself well to non-destructive testing in the future (e.g., infrared) as a means to maximize service life.

“Asphalt roofing systems have the potential for a very long life, and preventive maintenance is the key to realizing that potential,” says Hitchcock.

Non-gravel BUR surfacing options include aggregate, a mineral surface cap sheet, or a smooth, surface-coated membrane. Photos: Johns Manville

The goal is for problem areas to be detected and fixed before they develop into leaks. Inspections can reveal potentially troublesome situations, such as a loss of gravel surfacing, which could lead to felt erosion or brittleness. Less commonly, punctures and cuts to the membrane can occur, so it is wise to remove sharp objects and debris from the roof. Clogged drains or poorly sealed flashings also present problems that are repaired easily. The effects of chemical exhausts on roofing materials should also be monitored.

Preventive maintenance actions can help catch problems before they damage larger areas of the roof system. Inspections should be performed not only on aging roofs, but also on newly-installed roofs to guard against errors in installation, design, or specifications.

BUR and modified bitumen also have a long history of proven performance in the northern United States and Canada, where snow and ice buildup are common. Perhaps more than any other roof membrane, the BUR system shrugs off minor abuse.

BUR has proven to be a low-maintenance roofing system, and it can also be effectively repaired when needed. This means property owners can usually get more life out of a BUR. The ability to enhance the performance of existing BUR membranes with coatings, mod bit cap sheets, or flood coats of asphalt explain the long service lives of these systems in demanding applications.

“Property owners rarely have to replace a four-ply BUR until it is absolutely, positively worn out,” says one roofing contractor who asked to remain anonymous. “Based on experience, these asphalt-based systems ‘hang in there’ longer than less-robust roof options.”

When BUR Is Not the Best Option

There is no roofing product solution that will fit every building specification, and that certainly holds true for BUR. Probably more than any other roofing system (except spray polyurethane foam), the built-up roofing application is more of a skill than a science. As alternative systems have been introduced into the market, the job of finding experienced BUR contractors has become more difficult. This is especially true for the hot mopping of multi-ply BUR systems.

BURs are labor intensive and their installed cost will fluctuate with crude oil prices. However, as oil prices have continued to fall, BUR manufacturers have enjoyed the lowest asphalt pricing since the 2008-09 recession. (The price of oil peaked at about $117 a barrel in September 2012 and is $50 a barrel at this writing.) Typically BUR manufacturers will pass on a portion of these savings to their customers.

BUR has always held up well in life-cycle cost analyses. However, if a roof is not expected to last 20 years or more, it usually does not make sense to specify a premium four-ply BUR.

On larger projects, gravel-surfaced BURs are typically not practical from a cost standpoint unless a source of gravel is available locally. Projects where roof access is difficult often present challenges when roofing kettles are used. And despite the preponderance of low-fuming asphalts and kettles, re-roofing occupied buildings is often unacceptable to neighbors and/or the property owner.

Built-up roofing systems have sufficient strength to resist normal expansion and contraction forces that are exerted on a roof; however, they typically have a low ability to accommodate excessive building or substrate movement. Rephrased, if the roof must be used to “hold the walls” together or if the use of “loose-laid insulation” has a benefit, then a traditional three- or four-ply built-up roofing system is not a good choice.

A built-up roof typically provides high tensile strength with low elongation. Guidelines about where expansion joints should be installed in the roofing system should not be ignored by the designer. These guidelines include installing expansion joints where the deck changes direction, approximately every 200 feet (61 meters), although many consider that this dimension can be expanded for single-ply roofing membranes; where there is a change in deck material; and, anywhere there is a structural expansion joint, etc. Based on these requirements, on some projects it simply isn’t practical to use a BUR.

BUR materials must be kept dry before and during installation to prevent blistering in the roof system. Proper storage is the key: Do not overstock the roof; use breathable tarps to cover material on the roof; store material on pallets to minimize the possibility of material sitting in water; and store rolls on-end to prevent crushing. In general, polymeric single-ply membranes like TPO (thermoplastic polyolefin) are less susceptible to storage issues.

Many roof consultants and product manufacturers clearly state that there should be no phased construction of a built-up roof. If phasing is required, then a BUR should not be specified. This is a clean and simple rule to understand; if the roof being constructed is a four-ply BUR, then only as much insulation should be installed as can be covered the same day with all four of the plies in the built-up roofing membrane. Phased construction of a built-up roof greatly increases the potential for blistering of the membrane and does not allow for the total number of plies to be installed in a shingled fashion. Phased application contains other perils, such as roofing over a small amount of overnight precipitation or dew that, even with the best of intentions, can cause harm.

As stated above, costlier modified bitumen materials should be specified for flashings and to strip in metal. Stripping in two plies of felt will most likely result in splitting at the joints in a gravel stop because the two-ply application cannot accommodate the movement in the edge metal. On new or existing buildings where significant expansion/contraction is expected, a TPO, PVC or EPDM roof membrane can save the property owners money and eliminate premature roof failure due to roof splitting.

Conclusion

Manufacturers across North America are making asphalt roofing systems like BUR better and more versatile for architects, builders, contractors, roofing consultants, and building owner/managers. Thanks especially to the addition of polymers that add stretch and strength, architects can now specify a commercial, low-slope roof as part of a multi-ply BUR system any way they want it — hot, cold, torch, or self-adhered (hybrid BUR) — to meet the individual low-slope roofing project’s needs.

Most importantly, asphalt-based roofing products offer exceptional life-cycle cost performance. They have proven to be reliable, easy to maintain, and are trusted to perform exceptionally well in extreme weather conditions.

About the Author

Michael Russo
Michael Russo is a consultant to various roofing manufacturers and industry associations. He was the editor of Roofing/Siding/Insulation Magazine from 1980 to 2005. Russo has been reporting on the low-slope roofing industry for more than 36 years.

Be the first to comment on "Building to Last With Asphalt-Based Roofing"

Leave a Reply